In the early 1990s stream-associated amphibian populations in tropical upland North Queensland experienced severe declines resulting in extinction of three species, local elimination of four species, marked reductions in one species and apparently no declines in other species, Chytridiomycosis, a disease due to the amphibian chytrid fungus, Batrachochylrium dendrobatidis, was the likely cause of this epidemic. We conducted a monitoring study for chytridiomycosis in four species of frogs in North Queensland from October 1998 to October 2002 by collecting specimens in the field and using histology of removed digits to diagnose chytridiomycosis. Chytridiomycosis was diagnosed in 112 (7,1%) of the 1 578 specimens and prevalence was significantly associated with season and altitude, with higher prevalences in winter and above 300 metres altitude. A multivariate model adjusting for potential confounding effects arising from the sampling process demonstrated a significant decline in the time trend of prevalence of chytridiomycosis. The study supports the hypothesis that B. dendrobatidis becomes endemic after the initial epidemic wave. Since the surviving species of stream-associated frog, Litoria genimaculata, has increased to pre-decline numbers, the decline in prevalence of chytridiomycosis is evidence of a changed pathogen-host relationship. The reasons for this change are speculative but could be due to an increase in innate host resistance in response to selection pressure by B. dendrobatidis or to lower rainfall associated with an EI Nino effect. These findings justify management strategies that assist susceptible amphibian species to survive an initial epidemic wave of chytridiomycosis.
Spread of the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused the decline and extinction of frogs, but the distribution of Bd is not completely known. This information is crucial to implementing appropriate quarantine strategies, preparing for outbreaks of chytridiomycosis due to introduction of Bd, and for directing conservation actions towards affected species. This survey protocol provides a simple and standard method for sampling all frog populations in Australia to maximise the chances of detecting Bd. In order to structure and prioritise the protocol, areas are divided by bioregion and frog species are allocated depending on the water bodies they utilize into 3 groups representing different levels of risk of exposure to Bd. Sixty individuals per population need to be tested to achieve 95% certainty of detecting 1 positive frog, based on the minimum apparent prevalence of ≥5% in infected Australian frog populations and using a quantitative real-time TaqMan PCR test. The appropriate season to sample varies among bioregions and will ideally incorporate temperatures favourable for chytridiomycosis (e.g. maximum air temperatures generally < 27°C). Opportunistic collection and testing of sick frogs and tadpoles with abnormal mouthparts should also be done to increase the probability of detecting Bd. The survey priorities in order are (1) threatened species that may have been exposed to Bd, (2) bioregions surrounding infected bioregions/ecological groups, and (3) species of frogs of unknown infection status in infected bioregions. Within these priority groups, sampling should first target ecological groups and species likely to be exposed to Bd, such as those associated with permanent water, and areas within bioregions that have high risk for Bd as indicated by climatic modelling. This protocol can be adapted for use in other countries and a standard protocol will enable comparison among amphibian populations globally.
Many of the recent global amphibian mass mortalities, declines and extinctions have been attributed to the emerging infectious disease chytridiomycosis. There have been mass mortalities due to ranaviral disease but no major declines or extinctions. Controlling the transmission and spread of disease is of utmost importance, especially where there is the potential for human involvement. We have reviewed current hygiene guidelines for working with wild frogs, identified potential flaws and recommended those most suitable and effective for the field environment. Our within-site hygiene measures aim to reduce the risk of transmission among individuals. These measures encompass the capture, handling and holding of amphibians, skin disinfection before and after invasive procedures, marking frogs, sealing open wounds and treatment of accessory equipment. Our between-site hygiene measures aim to mitigate the risk of pathogen spread among populations. We have designed a risk calculator to help simplify and standardise the decision-making process for determining the level of risk and appropriate risk mitigation strategies to reduce the risk of increasing pathogen spread above background levels. Calculation of an overall risk score for pathogen spread takes into account the prior activity of field workers, the proposed activity, remoteness of the site, presence of known pathogens and the consequences of increased pathogen spread for amphibians in a given area.
Abstract. Chytridiomycosis is the worst disease to affect vertebrate biodiversity on record. In Australia, it is thought to have caused the extinction of four frog species, and it threatens the survival of at least 10 more. We report the current distribution and host range of this invasive disease in Australia, which is essential knowledge for conservation management. We envisage that the data be used in a global and national context for predictive modeling, meta-analyses, and risk assessment. Our continent-wide data set comprises 821 sites in Australia and includes 10 183 records from .80 contributors spanning collection dates from 1956 to 2007. Sick and dead frogs from the field and apparently healthy frogs from museum collections were tested opportunistically for the presence of Batrachochytrium dendrobatidis, the fungal pathogen causing chytridiomycosis, and apparently healthy frogs and tadpoles found during surveys were tested purposively. The diagnostic tests used were histology of skin samples and quantitative PCR of skin swabs.
Since the early 1980s, the southern corroboree frog Pseudophryne corroboree and northern corroboree frog P. pengilleyi have been in a state of decline from their sub-alpine and high montane bog environments on the southern tablelands of New South Wales, Australia. To date, there has been no adequate explanation as to what is causing the decline of these species. We investigated the possibility that a pathogen associated with other recent frog declines in Australia, the amphibian chytrid fungus Batrachochytrium dendrobatidis, may have been implicated in the decline of the corroboree frogs. We used histology of toe material and real-time PCR of skin swabs to investigate the presence and infection rates with B. dendrobatidis in historic and extant populations of both corroboree frog species. Using histology, we did not detect any B. dendrobatidis infections in corroboree frog populations prior to their decline. However, using the same technique, high rates of infection were observed in populations of both species after the onset of substantial population declines. The real-time PCR screening of skin swabs identified high overall infection rates in extant populations of P. corroboree (between 44 and 59%), while significantly lower rates of infection were observed in low-altitude P. pengilleyi populations (14%). These results suggest that the initial and continued decline of the corroboree frogs may well be attributed to the emergence of B. dendrobatidis in populations of these species. KEY WORDS: Amphibian declines · Corroboree frog · Amphibian chytrid fungus Resale or republication not permitted without written consent of the publisherContribution to DAO Special 4 'Chytridiomycosis: an emerging disease'
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.