This work aimed to evaluate whether ETS transcription factors frequently involved in rearrangements in prostate carcinomas (PCa), namely ERG and ETV1, regulate specific or shared target genes. We performed differential expression analysis on nine normal prostate tissues and 50 PCa enriched for different ETS rearrangements using exon-level expression microarrays, followed by in vitro validation using cell line models. We found specific deregulation of 57 genes in ERG-positive PCa and 15 genes in ETV1-positive PCa, whereas deregulation of 27 genes was shared in both tumor subtypes. We further showed that the expression of seven tumor-associated ERG target genes (PLA1A, CACNA1D, ATP8A2, HLA-DMB, PDE3B, TDRD1, and TMBIM1) and two tumor-associated ETV1 target genes (FKBP10 and GLYATL2) was significantly affected by specific ETS silencing in VCaP and LNCaP cell line models, respectively, whereas the expression of three candidate ERG and ETV1 shared targets (GRPR, KCNH8, and TMEM45B) was significantly affected by silencing of either ETS. Interestingly, we demonstrate that the expression of TDRD1, the topmost overexpressed gene of our list of ERG-specific candidate targets, is inversely correlated with the methylation levels of a CpG island found at -66 bp of the transcription start site in PCa and that TDRD1 expression is regulated by direct binding of ERG to the CpG island in VCaP cells. We conclude that ETS transcription factors regulate specific and shared target genes and that TDRD1, FKBP10, and GRPR are promising therapeutic targets and can serve as diagnostic markers for molecular subtypes of PCa harboring specific fusion gene rearrangements.
Genomic rearrangements involving ETS transcription factors are found in 50–70% of prostate carcinomas. While the large majority of the rearrangements involve ERG, around 10% involve members of the PEA3 subfamily (ETV1, ETV4 and ETV5). Using a panel of prostate cancer cell lines we found co-overexpression of ETV1 and ETV4 in two cell line models of advanced prostate cancer (MDA-PCa-2b and PC3) and questioned whether these PEA3 family members would cooperate in the acquisition of oncogenic properties or show functional redundancy. Using shRNAs we found that ETV1 and ETV4 have partially overlapping functions, with ETV1 being more relevant for cell invasion and ETV4 for anchorage-independent growth. In vitro expression signatures revealed the regulation of both specific and shared candidate targets that may resemble cellular mechanisms in vivo by interaction with the same intermediate partners. By combining the phenotypic impact data and the gene expression profiles of in vitro models with clinico-pathological features and gene expression profiles of ETS-subtyped tumors, we identified a set of eight genes associated with advanced stage and a set of three genes associated with higher Gleason score, supporting an oncogenic role of ETV1 and ETV4 overexpression and revealing gene sets that may be useful as prognostic markers.
Gastrin-releasing peptide receptor (GRPR) is known to be overexpressed in several human malignancies, including prostate cancer, and has been implicated in multiple important neoplastic signaling pathways. We recently have shown that GRPR is an ERG and ETV1 target gene in prostate cancer, using a genome-wide scale and exon-level expression microarray platform. Due to its cellular localization, the relevance of its function and the availability of blocking agents, GRPR seems to be a promising candidate as therapeutic target. Our present work shows that effective knockdown of GRPR in LNCaP and VCaP cells attenuates their malignant phenotype by decreasing proliferation, invasion and anchorage-independent growth, while increasing apoptosis. Using an antibody microarray we were able to validate known and identify new targets of GRPR pathway, namely AKT1, PKCε, TYK2 and MST1. Finally, we show that overexpression of these GRPR targets is restricted to prostate carcinomas harboring ERG and/or ETV1 rearrangements, establishing their potential as therapeutic targets for these particular molecular subsets of the disease.
Summary Regeneration of skeletal muscle requires resident stem cells called satellite cells. Here, we report that the chromatin remodeler CHD4, a member of the nucleosome remodeling and deacetylase (NuRD) repressive complex, is essential for the expansion and regenerative functions of satellite cells. We show that conditional deletion of the Chd4 gene in satellite cells results in failure to regenerate muscle after injury. This defect is principally associated with increased stem cell plasticity and lineage infidelity during the expansion of satellite cells, caused by de-repression of non-muscle-cell lineage genes in the absence of Chd4 . Thus, CHD4 ensures that a transcriptional program that safeguards satellite cell identity during muscle regeneration is maintained. Given the therapeutic potential of muscle stem cells in diverse neuromuscular pathologies, CHD4 constitutes an attractive target for satellite cell-based therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.