D 9 -tetrahydrocannabinol (D 9 -THC) and cannabidiol (CBD) are two major constituents of Cannabis sativa. D 9 -THC modulates sleep, but no clear evidence on the role of CBD is available. In order to determine the effects of CBD on sleep, it was administered intracerebroventricular (icv) in a dose of 10 lg/5 ll at the beginning of either the lights-on or the lightsoff period. We found that CBD administered during the lightson period increased wakefulness (W) and decreased rapid eye movement sleep (REMS). No changes on sleep were observed during the dark phase. Icv injections of CBD (10 lg/5 ll) induced an enhancement of c-Fos expression in waking-related brain areas such as hypothalamus and dorsal raphe nucleus (DRD). Microdialysis in unanesthetized rats was carried out to characterize the effects of icv administration of CBD (10 lg/ 5 ll) on extracellular levels of dopamine (DA) within the nucleus accumbens. CBD induced an increase in DA release. Finally, in order to test if the waking properties of CBD could be blocked by the sleep-inducing endocannabinoid anandamide (ANA), animals received ANA (10 lg/2.5 ll, icv) followed 15 min later by CBD (10 lg/2.5 ll). Results showed that the waking properties of CBD were not blocked by ANA. In conclusion, we found that CBD modulates waking via activation of neurons in the hypothalamus and DRD. Both regions are apparently involved in the generation of alertness. Also, CBD increases DA levels as measured by microdialysis and HPLC procedures. Since CBD induces alertness, it might be of therapeutic value in sleep disorders such as excessive somnolence.
Neurogenesis continues at least in two regions of the mammalian adult brain, the subventricular zone (SVZ) and the subgranular zone in hippocampal dentate gyrus. Neurogenesis in these regions is subjected to physiological regulation and can be modified by pharmacological and pathological events. Here we report the induction of neurogenesis in the SVZ and the differentiation after nigrostriatal pathway lesion along with transcranial magnetic field stimulation (TMFS) in adult rats. Significant numbers of proliferating cells demonstrated by bromodeoxyuridine-positive reaction colocalized with the neuronal marker NeuN were detected bilaterally in the SVZ, and several of these cells also expressed tyrosine hydroxylase. Transplanted chromaffin cells into lesioned animals also induced bilateral appearance of subependymal cells. These results show for the first time that unilateral lesion, transplant, and/or TMFS induce neurogenesis in the SVZ of rats and also that TMFS prevents the motor alterations induced by the lesion.
BackgroundOleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are amides of fatty acids and ethanolamine named N-acylethanolamines or acylethanolamides. The hydrolysis of OEA and PEA is catalyzed by the fatty acid amide hydrolase (FAAH). A number of FAAH inhibitors that increase the levels of OEA and PEA in the brain have been developed, including URB597. In the present report, we examined whether URB597, OEA or PEA injected into wake-related brain areas, such as lateral hypothalamus (LH) or dorsal raphe nuclei (DRN) would promote wakefulness (W) in rats.Methodology and Principal FindingsMale Wistar rats (250–300 g) were implanted for sleep studies with electrodes to record the electroencephalogram and electromyogram as well as a cannulae aimed either into LH or into DRN. Sleep stages were scored to determine W, slow wave sleep (SWS) and rapid eye movement sleep (REMS). Power spectra bands underly neurophysiological mechanisms of the sleep-wake cycle and provide information about quality rather than quantity of sleep, thus fast Fourier transformation analysis was collected after the pharmacological trials for alpha (for W; α = 8–12 Hz), delta (for SWS; δ = 0.5–4.0 Hz) and theta (for REMS; θ = 6.0–12.0 Hz). Finally, microdialysis samples were collected from a cannula placed into the nucleus accumbens (AcbC) and the levels of dopamine (DA) were determined by HPLC means after the injection of URB597, OEA or PEA. We found that microinjection of compounds (10, 20, 30 µg/1 µL; each) into LH or DRN during the lights-on period increased W and decreased SWS as well as REMS and enhanced DA extracellular levels.ConclusionsURB597, OEA or PEA promoted waking and enhanced DA if injected into LH or DRN. The wake-promoting effects of these compounds could be linked with the enhancement in levels of DA and indirectly mediated by anandamide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.