Deep learning is a promising tool to determine the physical model that describes our universe. To handle the considerable computational cost of this problem, we present CosmoFlow: a highly scalable deep learning application built on top of the TensorFlow framework. CosmoFlow uses efficient implementations of 3D convolution and pooling primitives, together with improvements in threading for many element-wise operations, to improve training performance on Intel ® Xeon Phi™ processors. We also utilize the Cray PE Machine Learning Plugin for efficient scaling to multiple nodes.We demonstrate fully synchronous data-parallel training on 8192 nodes of Cori with 77% parallel efficiency, achieving 3.5 Pflop/s sustained performance. To our knowledge, this is the first large-scale science application of the TensorFlow framework at supercomputer scale with fully-synchronous training. These enhancements enable us to process large 3D dark matter distribution and predict the cosmological parameters ΩM , σ8 and ns with unprecedented accuracy.
As data volumes increase at a high speed in more and more application fields of science, engineering, information services, etc., the challenges posed by data-intensive computing gain an increasing importance. The emergence of highly scalable infrastructures, e.g. for cloud computing and for petascale computing and beyond introduces additional issues for which scalable data management becomes an immediate need. This paper brings several contributions. First, it proposes a set of principles for designing highly scalable distributed storage systems that are optimized for heavy data access concurrency. In particular, we highlight the potentially large benefits of using versioning in this context. Second, based on these principles, we propose a set of versioning algorithms, both for data and metadata, that enable a high throughput under concurrency. Finally, we implement and evaluate these algorithms in the BlobSeer prototype, that we integrate as a storage backend in the Hadoop MapReduce framework. We perform extensive microbenchmarks as well as experiments with real MapReduce applications: they demonstrate that applying the principles defended in our approach brings substantial benefits to data intensive applications.
Most researchers working on high-dimensional indexing agree on the following three trends: (i) the size of the multimedia collections to index are now reaching millions if not billions of items, (ii) the computers we use every day now come with multiple cores and (iii) hardware becomes more available, thanks to easier access to Grids and/or Clouds. This paper shows how the Map-Reduce paradigm can be applied to indexing algorithms and demonstrates that great scalability can be achieved using Hadoop, a popular Map-Reducebased framework. Dramatic performance improvements are not however guaranteed a priori: such frameworks are rigid, they severely constrain the possible access patterns to data and scares resource RAM has to be shared. Furthermore, algorithms require major redesign, and may have to settle for sub-optimal behavior. The benefits, however, are many: simplicity for programmers, automatic distribution, fault tolerance, failure detection and automatic re-runs and, last but not least, scalability. We share our experience of adapting a clustering-based high-dimensional indexing algorithm to the Map-Reduce model, and of testing it at large scale with Hadoop as we index 30 billion SIFT descriptors. We foresee that lessons drawn from our work could minimize time, effort and energy invested by other researchers and practitioners working in similar directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.