The purpose of this study is to investigate how the imposition of personalized, non-invasively measured blood flow rates as boundary conditions (BCs) influences image-based computational hemodynamic studies in the human aorta. We extracted from 4D phase-contrast MRI acquisitions of a healthy human (1) the geometry of the thoracic aorta with supra-aortic arteries and (2) flow rate waveforms at all boundaries. Flow simulations were carried out, and the implications that the imposition of different BC schemes based on the measured flow rates have on wall shear stress (WSS)-based indicators of abnormal flow were analyzed. Our results show that both the flow rate repartition among the multiple outlets of the aorta and the distribution and magnitude of the WSS-based indicators are strongly influenced by the adopted BC strategy. Keeping as reference hemodynamic model the one where the applied BC scheme allowed to obtain a satisfactory agreement between the computed and the measured flow rate waveforms, differences in WSS-based indicators up to 49% were observed when the other BC strategies were applied. In conclusion, we demonstrate that in subject-specific computational hemodynamics models of the human aorta the imposition of BC settings based on non-invasively measured flow rate waveforms influences indicators of abnormal flow to a large extent. Hence, a BCs set-up assuring realistic, subject-specific instantaneous flow rate distribution must be applied when BCs such as flow rates are prescribed.
Computational fluid dynamics (CFD) models have become very effective tools for predicting the flow field within the carotid bifurcation, and for understanding the relationship between local hemodynamics, and the initiation and progression of vascular wall pathologies. As prescribing proper boundary conditions can affect the solutions of the equations governing blood flow, in this study, we investigated the influence to assumptions regarding the outflow boundary conditions in an image-based CFD model of human carotid bifurcation. Four simulations were conducted with identical geometry, inlet flow rate, and fluid parameters. In the first case, a physiological time-varying flow rate partition at branches along the cardiac cycle was obtained by coupling the 3D model of the carotid bifurcation at outlets with a lumped-parameter model of the downstream vascular network. Results from the coupled model were compared with those obtained by imposing three fixed flow rate divisions (50/50, 60/40, and 70/30) between the two branches of the isolated 3D model of the carotid bifurcation. Three hemodynamic wall parameters were considered as indicators of vascular wall dysfunction. Our findings underscore that the overall effect of the assumptions done in order to simulate blood flow within the carotid bifurcation is mainly in the hot-spot modulation of the hemodynamic descriptors of atherosusceptible areas, rather than in their distribution. In particular, the more physiological, time-varying flow rate division deriving from the coupled simulation has the effect of damping wall shear stress (WSS) oscillations (differences among the coupled and the three fixed flow partition models are up to 37.3% for the oscillating shear index). In conclusion, we recommend to adopt more realistic constraints, for example, by coupling models at different scales, as in this study, when the objective is the outcome prediction of alternate therapeutic interventions for individual patients, or to test hypotheses related to the role of local fluid dynamics and other biomechanical factors in vascular diseases.
The performance of porous scaffolds for tissue engineering (TE) applications is evaluated, in general, in terms of porosity, pore size and distribution, and pore tortuosity. These descriptors are often confounding when they are applied to characterize transport phenomena within porous scaffolds. On the contrary, permeability is a more effective parameter in (1) estimating mass and species transport through the scaffold and (2) describing its topological features, thus allowing a better evaluation of the overall scaffold performance. However, the evaluation of TE scaffold permeability suffers of a lack of uniformity and standards in measurement and testing procedures which makes the comparison of results obtained in different laboratories unfeasible. In this review paper we summarize the most important features influencing TE scaffold permeability, linking them to the theoretical background. An overview of methods applied for TE scaffold permeability evaluation is given, presenting experimental test benches and computational methods applied (1) to integrate experimental measurements and (2) to support the TE scaffold design process. Both experimental and computational limitations in the permeability evaluation process are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.