Phosphorylation of ␣-synuclein (␣-syn) at Ser-129 is a hallmark of Parkinson disease and related synucleinopathies. However, the identity of the natural kinases and phosphatases responsible for regulating ␣-syn phosphorylation remain unknown. Here we demonstrate that three closely related members of the human Polo-like kinase (PLK) family (PLK1, PLK2, and PLK3) phosphorylate ␣-syn and -syn specifically at Ser-129 and Ser-118, respectively. Unlike other kinases reported to partially phosphorylate ␣-syn at Ser-129 in vitro, phosphorylation by PLK2 and PLK3 is quantitative (>95% conversion). Only PLK1 and PLK3 phosphorylate -syn at Ser-118, whereas no phosphorylation of ␥-syn was detected by any of the four PLKs (PLK1 to -4). PLK-mediated phosphorylation was greatly reduced in an isolated C-terminal fragment (residues 103-140) of ␣-syn, suggesting substrate recognition via the N-terminal repeats and/or the non-amyloid component domain of ␣-syn. PLKs specifically co-localized with phosphorylated Ser-129 (Ser(P)-129) ␣-syn in various subcellular compartments (cytoplasm, nucleus, and membranes) of mammalian cell lines and primary neurons as well as in ␣-syn transgenic mice, especially cortical brain areas involved in synaptic plasticity. Furthermore, we report that the levels of PLK2 are significantly increased in brains of Alzheimer disease and Lewy body disease patients. Taken together, these results provide biochemical and in vivo evidence of ␣-syn and -syn phosphorylation by specific PLKs. Our results suggest a need for further studies to elucidate the potential role of PLK-syn interactions in the normal biology of these proteins as well as their involvement in the pathogenesis of Parkinson disease and other synucleinopathies.Increasing evidence suggests that phosphorylation may play an important role in the oligomerization and fibrillogenesis (1), Lewy body formation (1, 2) and neurotoxicity of ␣-synuclein (␣-syn) 5 in vivo (3). The majority of ␣-syn within Lewy bodies (LBs) in diseased human brains and animal models of Parkinson disease (PD) and related synucleinopathies is phosphorylated at Ser-129 (Ser(P)-129) (1, 2, 4 -7). Although recent studies support the notion that phosphorylation at Ser-129 is related to pathology and blocks ␣-syn fibrillization in vitro (8, 9), the exact mechanisms by which phosphorylation at Ser-129 modulates ␣-syn aggregation and toxicity in vivo remain elusive. Unraveling the role of phosphorylation in modulating the physiological and pathogenic activities of ␣-syn requires identification of the kinases and phosphatases involved in regulating its phosphorylation in vivo.Several kinases that phosphorylate ␣-syn at serine and tyrosine residues, primarily in its C-terminal region, have been identified using in vitro kinase assays and co-transfection studies. Casein kinase I and II, G-protein-coupled receptor kinases (GRK1, GRK2, GRK5, and GRK6), and calmodulin-dependent kinase II (10 -12) phosphorylate ␣-syn at Ser-129. Ser-87 is the only residue outside the C-terminal region report...
Despite increasing evidence that supports the role of different post-translational modifications (PTMs) in modulating α-synuclein (α-syn) aggregation and toxicity, relatively little is known about the functional consequences of each modification and whether or not these modifications are regulated by each other. This lack of knowledge arises primarily from the current lack of tools and methodologies for the site-specific introduction of PTMs in α-syn. More specifically, the kinases that mediate selective and efficient phosphorylation of C-terminal tyrosine residues of α-syn remain to be identified. Unlike phospho-serine and phospho-threonine residues, which in some cases can be mimicked by serine/threonine → glutamate or aspartate substitutions, there are no natural amino acids that can mimic phosphor-tyrosine. To address these challenges, we developed a general and efficient semisynthetic strategy that enables the site-specific introduction of single or multiple PTMs and the preparation of homogeneously C-terminal modified forms of α-syn in milligram quantities. These advances have allowed us to investigate, for the first time, the effects of selective phosphorylation at Y125 on the structure, aggregation, membrane binding and subcellular localization of α-syn. The development of semisynthetic methods for the site-specific introduction of single or PTMs represents an important advance toward determining the roles of such modifications in α-syn structure, aggregation and functions in heath and disease.
Conversion of cellular prion protein (PrP(C)) into the pathological conformer (PrP(Sc)) has been studied extensively by using recombinantly expressed PrP (rPrP). However, due to inherent difficulties of expressing and purifying posttranslationally modified rPrP variants, only a limited amount of data is available for membrane-associated PrP and its behavior in vitro and in vivo. Here, we present an alternative route to access lipidated mouse rPrP (rPrP(Palm)) via two semisynthetic strategies. These rPrP variants studied by a variety of in vitro methods exhibited a high affinity for liposomes and a lower tendency for aggregation than rPrP. In vivo studies demonstrated that double-lipidated rPrP is efficiently taken up into the membranes of mouse neuronal and human epithelial kidney cells. These latter results enable experiments on the cellular level to elucidate the mechanism and site of PrP-PrP(Sc) conversion.
A hallmark in prion diseases is the conformational transition of the cellular prion protein (PrPC) into a pathogenic conformation, designated scrapie prion protein (PrPSc), which is the essential constituent of infectious prions. Here, we show that epigallocatechin gallate (EGCG) and gallocatechin gallate, the main polyphenols in green tea, induce the transition of mature PrPC into a detergent‐insoluble conformation distinct from PrPSc. The PrP conformer induced by EGCG was rapidly internalized from the plasma membrane and degraded in lysosomal compartments. Isothermal titration calorimetry studies revealed that EGCG directly interacts with PrP leading to the destabilizing of the native conformation and the formation of random coil structures. This activity was dependent on the gallate side chain and the three hydroxyl groups of the trihydroxyphenyl side chain. In scrapie‐infected cells EGCG treatment was beneficial; formation of PrPSc ceased. However, in uninfected cells EGCG interfered with the stress‐protective activity of PrPC. As a consequence, EGCG‐treated cells showed enhanced vulnerability to stress conditions. Our study emphasizes the important role of PrPC to protect cells from stress and indicate efficient intracellular pathways to degrade non‐native conformations of PrPC.
Pinning down the role of the anchor: The chemical synthesis of a cysteine‐modified glycosylphosphatidylinositol (GPI) anchor provides access to homogeneous GPI‐anchored prion protein through expressed protein ligation (see scheme). By this method, it should be possible to investigate the influence of the complex posttranslational GPI modification on protein structure and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.