Prediction of breast cancer response to Neoadjuvant Chemotherapy (NACT) is an urgent need to promptly direct non-responder patients to alternative therapies. Infiltrating T lymphocytes, namely cytotoxic T lymphocytes (CTLs) have been appointed as predictors of response. However, cancer cells have the ability to dampen CTLs' activity and thus, the prognostic value of the CTLs, per se, is debatable. Here, we disclose that more than the occurrence of CTLs, it is their activation state, revealed by HLA-DR expression, that can accurately predict response to NACT. Flow cytometry analysis of breast cancer biopsies showed that the frequency of CTLs and other lymphocytes were similar regardless disease stage and between NACT responders and non-responders. However, only breast cancer patients without axillary lymph node metastasis and NACT responders have HLA-DRhi CTLs. Interestingly, HLA-DR levels in tumor CTLs is correlated with HLA-DR levels in systemic CTLs. These HLA-DR+ CTLs produce IFN-γ and Granzyme B, enlightening their effector and probable anti-tumor activity profile. Moreover, the level of HLA-DR in CTLs is negatively correlated with the level of HLA-DR in T regulatory lymphocytes and with immunosuppressive and pro-tumor molecules in the tumor microenvironment. Hence, HLA-DR levels in CTLs is a highly sensitive and specific potential predictive factor of NACT-response, which can be assessed in blood to guide therapeutic decisions.
Epithelial-to-mesenchymal transitions (EMT) are strongly implicated in cancer dissemination. Intermediate states, arising from inter-conversion between epithelial (E) and mesenchymal (M) states, are characterized by phenotypic heterogeneity combining E and M features and increased plasticity. Hybrid EMT states are highly relevant in metastatic contexts, but have been largely neglected, partially due to the lack of physiologically-relevant 3D platforms to study them. Here we propose a new in vitro model, combining mammary E cells with a bioengineered 3D matrix, to explore phenotypic and functional properties of cells in transition between E and M states. Optimized alginate-based 3D matrices provided adequate 3D microenvironments, where normal epithelial morphogenesis was recapitulated, with formation of acini-like structures, similar to those found in native mammary tissue. TGFβ1-driven EMT in 3D could be successfully promoted, generating M-like cells. TGFβ1 removal resulted in phenotypic switching to an intermediate state (RE cells), a hybrid cell population expressing both E and M markers at gene/protein levels. RE cells exhibited increased proliferative/clonogenic activity, as compared to M cells, being able to form large colonies containing cells with front-back polarity, suggesting a more aggressive phenotype. Our 3D model provides a powerful tool to investigate the role of the microenvironment on metastable EMT stages.
Triple negative breast cancer (TNBC) is a type of breast cancer (BC) that does not express the oestrogen and the progesterone receptors and the human epidermal growth factor receptor type 2 (HER2). Since there are no positive markers to reliably classify TNBC, these tumours are not yet treated with targeted therapies. Perhaps for this reason they are the most aggressive form of breast carcinomas. However, the clinical observation that these patients do not carry a uniformly dismal prognosis, coupled with data coming from pathology and epidemiology, suggests that this negative definition is not capturing a single clinical entity, but several. We critically evaluate this evidence in this paper, reviewing clinical and epidemiological data and new studies that aim to subclassify TNBC. Moreover, evidence on the role of tumour infiltrating lymphocytes (TILs) on TNBC progression, response to chemotherapy and patient outcome have been published. The heterogeneity, observed even at TILs level, highlights the idea that TNBC is much more than a single disease with a unique treatment. The exploration of the immune environment present at the tumour site could indeed help in answering the question ‘How many diseases is TNBC’ and will help to define prognosis and eventually develop new therapies, by stimulating the immune effector cells or by inhibiting immunological repressor molecules.In this review, we focus on the prospect of the patient’s diverse immune signatures within the tumour as potential biomarkers and how they could be modulated to fight the disease.
3D cell culture including different cell types, such as immune cells, is a representative platform that mimics the tumor microenvironment. Here we disclose an easy-to-handle 3D co-culture protocol using a scaffold-free technique with the breast cancer cell line MDA-MB-231 and breast cancer patient-derived immune cells from peripheral blood. The method presented is simple, less time-consuming and less expensive when compared to other 3D techniques. Additionally, this is an optimized protocol for the establishment of a 3D system for this cell line, which is normally seen as challenging to spontaneously form spheroids. The addition of patient-derived immune cells to the cancer cells' spheroid allows the study of the crosstalk between both cell types, as well as the assessment of individual therapeutic approaches to intensify the antitumor immune response. In fact, with this model, we observed that patients' immune cells exhibit a wide range of antitumor responses and we further demonstrated that it is possible to manipulate the less effective ones with a canonical stimulus, as a proof-of-concept, in order to improve their ability to lower the viability of tumor cells. Therefore, this platform could be applied for a personalized immune-based drug screening, with results after a maximum of 10 days of culture, in order to develop more tailored breast cancer treatments and ameliorate patients' survival rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.