Although partially controlled with antiemetic drugs, postoperative nausea and vomiting (PONV) continues to be a problem for many patients. Clinical research suggests that opioid analgesics and volatile anesthetics are the main triggers of PONV. The aim of this study was to develop an animal model for post-anesthesia vomiting for future studies to further determine mechanisms and preclinical drug efficacy. Ferrets (N=34) were initially used because they have served as a gold standard for emesis research. Ferrets were tested with several doses of morphine, inhaled isoflurane, and a positive control injection of cisplatin (a chemotherapy agent) to induce emesis. Musk shrews (a small animal model; N=36) were also tested for emesis with isoflurane exposure. A control injection of cisplatin produced emesis in ferrets (ip, 129.8±22.0 retches; 13.7±2.3 vomits; mean ± SEM). Morphine produced a dose-response on emesis in ferrets, with maximal responses at 0.9 mg/kg (sc, 29.6±12.6 retches; 1.8±0.9, vomits). Isoflurane exposure (2–4% for 10 min to 6 h exposure) failed to induce vomiting, was not associated with an increased frequency in emesis when combined with a low dose of morphine (0.1 mg/kg, sc), and failed to produced consistent effects on food and water intake. In contrast to ferrets, musk shrews were very sensitive to isoflurane-induced emesis (0.5 to 3%, 10 min exposure; up to 11.8±2.4 emetic episodes). Overall, these results indicate that ferrets will not be useful for delineating mechanisms responsible for isoflurane-induced emesis; however, musk shrews may prove to be a model for vomiting after inhalation of volatile agents.
Signals from the vestibular system, area postrema, and forebrain elicit nausea and vomiting, but gastrointestinal (GI) vagal afferent input arguably plays the most prominent role in defense against food poisoning. It is difficult to determine the contribution of GI vagal afferent input on emesis because various agents (e.g., chemotherapy) often act on multiple sensory pathways. Intragastric copper sulfate (CuSO4) potentially provides a specific vagal emetic stimulus, but its actions are not well defined in musk shrews (Suncus murinus), a primary small animal model used to study emesis. The aims of the current study were 1) to investigate the effects of subdiaphragmatic vagotomy on CuSO4-induced emesis and 2) to conduct preliminary transneuronal tracing of the GI-brain pathways in musk shrews. Vagotomy failed to inhibit the number of emetic episodes produced by optimal emetic doses of CuSO4 (60 and 120 mg/kg ig), but the effects of lower doses were dependent on an intact vagus (20 and 40 mg/kg). Vagotomy also failed to affect emesis produced by motion (1 Hz, 10 min) or nicotine administration (5 mg/kg sc). Anterograde transport of the H129 strain of herpes simplex virus-1 from the ventral stomach wall identified the following brain regions as receiving inputs from vagal afferents: the nucleus of the solitary tract, area postrema, and lateral parabrachial nucleus. These data indicate that the contribution of vagal pathways to intragastric CuSO4-induced emesis is dose dependent in musk shrews. Furthermore, the current neural tracing data suggest brain stem anatomical circuits that are activated by GI signaling in the musk shrew.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.