Cyanobacterial diazotrophs play a significant role in environmental nitrogen economy despite their habitat either tropical or polar. However, the phenomenon by which it copes with temperature induced stress is poorly understood. Temperature response study of psychrophilic and mesophilic Nostoc strains explores their adaptive mechanisms. The selected psychrophilic and mesophilic strains were confirmed as Nostoc punctiforme and Nostoc calcicola respectively, by ultrastructure and 16S rDNA phylogeny. The psychrophilic strain has extensive glycolipid and polysaccharide sheath along with characteristic deposition of cyanophycin, polyhydroxybutyrate granules, and carboxysomes. This is possibly an adaptive strategy exhibited to withstand the freezing temperature and high intense of ultraviolet rays. The biomass measured in terms of dry weight, protein, and chlorophyll indicated a temperature dependant shift in both the psychrophilic and mesophilic strains and attained maximum growth in their respective temperature niches. At low temperature, psychrophilic organism exhibited nitrogenase activity, while mesophilic strains did not. The maximum glutamine synthetase activity was observed at 4°C for psychrophilic and 37°C for mesophilic strains. Activity at 4°C in psychrophilic strains revealed their energetic mechanism even at low temperature. The nitrate and nitrite reductase of both psychrophilic and mesophilic strains showed maximum activity at 37°C denoting their similar nitrogen assimilating mechanisms for combined nitrogen utilization. The activity studies of nitrogen fixation/assimilation enzymes have differential effects at varying temperatures, which provide valuable insights of physiological contribution and role of Nostoc strains in the biological nitrogen cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.