Polymers obtained from biomass are an interesting alternative to petro-based polymers due to their low cost of production, biocompatibility, and biodegradability. This is the case of lignin, which is the second most abundant biopolymer in plants. As a consequence, the exploitation of lignin for the production of new materials with improved properties is currently considered as one of the main challenging issues, especially for the paper industry. Regarding its chemical structure, lignin is a crosslinked polymer that contains many functional hydrophilic and active groups, such as hydroxyls, carbonyls and methoxyls, which provides a great potential to be employed in the synthesis of biodegradable hydrogels, materials that are recognized for their interesting applicability in biomedicine, soil and water treatment, and agriculture, among others. This work describes the main methods for the preparation of lignin-based hydrogels reported in the last years, based on the chemical and/or physical interaction with polymers widely used in hydrogels formulations. Furthermore, herein are also reviewed the current applications of lignin hydrogels as stimuli-responsive materials, flexible supercapacitors, and wearable electronics for biomedical and water remediation applications.
In this research a chemical modification of kraft lignin was carried out using a basic nucleophilic substitution reaction (NSA) in order to functionalize it as a novel crosslinking agent for the synthesis of active hydrogels. The chemical modification success of the synthesized crosslinker was demonstrated by using several techniques such as volumetry probes, FTIR, 1H-NMR and DSC. Thus, the obtained materials were employed during the synthesis of acrylic acid-based hydrogels, due to its high-water absorption capacity to evaluate their retention potential of heavy metal ions. Characterization of the active hydrogels were performed by FTIR and SEM, showing the specific signals corresponding to the base monomers into the polymer skeleton and the efficiency of modified kraft lignin as a novel crosslinking agent. Additionally, to demonstrate the potential use of these hydrogels in wastewater treatment, metal ions adsorption experiments were conducted, showing adsorption percentages higher than 90% and 80% for Pb2+ and Cu2+, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.