Through the canonical LC3 interaction motif (LIR), [W/F/Y]‐X1‐X2‐[I/L/V], protein complexes are recruited to autophagosomes to perform their functions as either autophagy adaptors or receptors. How these adaptors/receptors selectively interact with either LC3 or GABARAP families remains unclear. Herein, we determine the range of selectivity of 30 known core LIR motifs towards individual LC3s and GABARAPs. From these, we define a GABARAP Interaction Motif (GIM) sequence ([W/F]‐[V/I]‐X2‐V) that the adaptor protein PLEKHM1 tightly conforms to. Using biophysical and structural approaches, we show that the PLEKHM1‐LIR is indeed 11‐fold more specific for GABARAP than LC3B. Selective mutation of the X1 and X2 positions either completely abolished the interaction with all LC3 and GABARAPs or increased PLEKHM1‐GIM selectivity 20‐fold towards LC3B. Finally, we show that conversion of p62/SQSTM1, FUNDC1 and FIP200 LIRs into our newly defined GIM, by introducing two valine residues, enhances their interaction with endogenous GABARAP over LC3B. The identification of a GABARAP‐specific interaction motif will aid the identification and characterization of the expanding array of autophagy receptor and adaptor proteins and their in vivo functions.
Abstract:Through the canonical LC3 interaction motif (LIR), [W/F/Y]-X 1 -X 2 -[I/L/V], protein complexes are recruited to autophagosomes to perform their functions as either autophagy adaptors or receptors.How these adaptors/receptors selectively interact with either LC3 or GABARAP families remains unclear. Herein, we determine the range of selectivity of 30 known core LIR motifs towards LC3s and GABARAPs. From these, we define a GABARAP Interaction Motif (GIM) sequence (W/F-V-X 2 -V) that the adaptor protein PLEKHM1 tightly conforms to. Using biophysical and structural approaches, we show that the PLEKHM1-LIR is indeed eleven-fold more specific for GABARAP than LC3B. Selective mutation of the X 1 and X 2 positions either completely abolished the interaction with all LC3 and GABARAPs or increased PLEKHM1-GIM selectivity 20-fold towards LC3B. Finally, we show that conversion of the canonical p62/SQSTM1-LIR into our newly defined GIM, by introducing two valine residues, enhances p62/SQSTM1 interaction with endogenous GABARAP over LC3B. The identification of a GABARAP-specific interaction motif will aid the identification and characterization of the continually expanding array of autophagy receptor and adaptor proteins and their in vivo functions.
FAM111A is a replisome associated protein and dominant mutations within its trypsinlike peptidase domain are linked to severe human developmental syndromes. However, FAM111A functions and its putative substrates remain largely unknown. Here, we showed that FAM111A promotes origin activation and interacts with the putative peptidase FAM111B, and we identified the first potential FAM111A substrate, the suicide enzyme HMCES. Moreover, unrestrained expression of FAM111A wild-type and patient mutants impaired DNA replication and caused cell death only when the peptidase domain remained intact. Altogether our data reveal how FAM111A promotes DNA replication in normal conditions and becomes harmful in a disease context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.