Regular consumption of fermented dairy products helps maintain a healthy microbiota and prevent gut dysbiosis-linked diseases. The lactic acid bacteria (LAB) present in food enhance the digestibility of proteins, moderate the release of fatty acids, and support human health through inhabiting the gastrointestinal tract. These desirable properties of LAB are attributed, in part, to their metabolic processes involving enzymes such as lipases, proteases, and antibacterial proteins. The LAB strains presenting higher enzymatic activities may offer improved functionality for applications in foods. The first aim of this work was to isolate and identify LAB from diverse dairy products and select those with enhanced enzymatic activities. Secondly, this work aimed to investigate the subcellular organization and identity of these enzymes after semi-purification. Out of the total 137 LAB strains isolated and screened, 50.3% and 61.3% of the strains exhibited lipolytic and proteolytic activities, respectively. Seven strains displaying high enzymatic activities were selected and further characterized for the cellular organization of their lipases, proteases, and antibacterial proteins. The lipolytic and proteolytic activities were exhibited predominantly in the extracellular fraction; whereas, the antibacterial activities were found in various cellular fractions and were capable of inhibiting common undesirable microorganisms in foods. In total, two lipases, seven proteases, and three antibacterial proteins were identified by LC-MS/MS. Characterization of LAB strains with high enzymatic activity has potential biotechnological significance in fermentative processes and in human health as they may improve the physicochemical characteristics of foods and displace strains with weaker enzymatic activities in the human gut microbiota.
In recent years, acid whey production has increased due to a growing demand for Greek yogurt and acidcoagulated cheeses. Acid whey is a dairy by-product for which the industry has long struggled to find a sustainable application. Bulk amounts of acid whey associated with the dairy industry have led to increasing research on ways to valorize it. Industry players are finding ways to use acid whey on-site with ultrafiltration techniques and biodigesters, to reduce transportation costs and provide energy for the facility. Academia has sought to further investigate practical uses and benefits of this by-product. Although modern research has shown many other possible applications for acid whey, no comprehensive review yet exists about its composition, utilization, and health benefits. In this review, the industrial trends, the applications and uses, and the potential health benefits associated with the consumption of acid whey are discussed. The proximal composition of acid whey is discussed in depth. In addition, the potential applications of acid whey, such as its use as a starting material in the production of fermented beverages, as growth medium for cultivation of lactic acid bacteria in replacement of commercial media, and as a substrate for the isolation of lactose and minerals, are reviewed. Finally, the potential health benefits of the major protein constituents of acid whey, bioactive phospholipids, and organic acids such as lactic acid are described. Acid whey has promising applications related to potential health benefits, ranging from antibacterial effects to cognitive development for babies to human gut health.
The milk fat globule membrane (MFGM), the component that surrounds fat globules in milk, and its constituents have gained significant attention for their gut function, immune-boosting properties, and cognitive-development roles. The MFGM can directly interact with probiotic bacteria, such as bifidobacteria and lactic acid bacteria (LAB), through interactions with bacterial surface proteins. With these interactions in mind, increasing evidence supports a synergistic effect between MFGM and probiotics to benefit human health at all ages. This important synergy affects the survival and adhesion of probiotic bacteria through gastrointestinal transit, mucosal immunity, and neurocognitive behavior in developing infants. In this review, we highlight the current understanding of the co-supplementation of MFGM and probiotics with a specific emphasis on their interactions and colocalization in dairy foods, supporting in vivo and clinical evidence, and current and future potential applications.
The mechanisms of bacterial adhesion to human cells involve several complex reactions and activation of genes and proteins. It has been reported that the food components in dairy matrices, such as sugar or salt, can decrease bacterial adhesion to Caco-2 cells. However, it has not been evaluated whether the bacteria grown in media supplemented with milk phospholipids (MPL) can increase or decrease the adhesion of these cells. The objective of this work was to evaluate the effects of MPL on the kinetic growth of lactic acid bacteria (LAB) and their functional characteristics as probiotics, expression of surface protein genes, and adherence to Caco-2 cells. Seven LAB strains isolated from various dairy products were characterized. Five of the tested LAB strains were able to grow in a chemically defined medium supplemented with MPL. Lactobacillus reuteri OSU-PECh-48 showed the highest growth rate and the greatest optical density. All of the strains tested showed tolerance to acidic conditions at pH 3.0 and to bile salts at 0.5 and 1% concentrations. Auto-aggregation and cell surface hydrophobicity ability were evaluated, with nonsignificant differences between the strains grown in MPL and without MPL. Gene expression of 6 surface proteins was evaluated in the presence or absence of MPL. Pediococcus acidilactici OSU-PECh-L and OSU-PECh-48 were the strains with highest relative expression of 5 of the 6 genes evaluated. Lactobacillus paracasei OSU-PECh-BA was the strain with the lowest level of expression of surface protein genes. Most of the bacteria tested had increased adhesion to Caco-2 cells after growth in MPL. The bacteria with the highest degrees of adhesion observed were Lactobacillus paracasei OSU-PECh-3B, Pediococcus acidilactici OSU-PECh-L, and Lactobacillus reuteri OSU-PECh-48. The genes Cnb and EF-Tu increased in expression in the presence of MPL in most of the LAB tested. The results obtained in this work demonstrate the high potential of these LAB strains for use as starters or beneficial cultures in fermentation of not only dairy products but also other food fermentation processes, with promising ability to increase residence time in the gut, modify the microbiome, and improve human health.
An Enterococcus durans strain, designated OSY-EGY, was previously isolated from artisanal cheese. In this work, comparative genomic and phenotypic analyses were utilized to assess the safety characteristics and probiotic traits of the bacterium. The comparative genomic analysis revealed that the strain is distantly related to potentially pathogenic Enterococcus spp. The genome was devoid of genes encoding acquired antibiotic resistance or marker virulence factors associated with Enterococcus spp. Phenotypically, the bacterium is susceptible to vancomycin, ampicillin, tetracycline, chloramphenicol, and aminoglycosides and does not have any hemolytic or gelatinase activity, or cytotoxic effect on Caco-2 cells. Altogether, these findings confirm the lack of hazardous traits in E. durans OSY-EGY. Mining E. durans OSY-EGY genome, for probiotic-related sequences, revealed genes associated with acid and bile salts tolerance, adhesion, competitiveness, antioxidant activitiy, antimicrobial activity, essential amino acids production, and vitamins biosynthesis. Phenotypically, E. durans OSY-EGY was tolerant to acidic pH (3.0), and presence of 0.3% bile salts. The bacterium showed adhesion capability to Caco-2 cells, cholesterol-lowering effect, DPPH scavenging activity, and antimicrobial activity against several Gram-positive pathogenic bacteria. Based on the current work, we propose that E. durans OSY-EGY is a potentially safe strain with desirable probiotic and antimicrobial traits. Thus, the investigated strain could be a promising candidate for several industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.