Phosphatidylcholines (PtdChos) comprise the most common phospholipid class in eukaryotic cells. In mammalian cells, these insoluble molecules are transferred between membranes by a highly specific phosphatidylcholine transfer protein (PC-TP) belonging to the steroidogenic acute regulatory protein related transfer (START) domain superfamily of hydrophobic ligand-binding proteins. The crystal structures of human PC-TP in complex with dilinoleoyl-PtdCho or palmitoyl-linoleoyl-PtdCho reveal that a single well-ordered PtdCho molecule occupies a centrally located tunnel. The positively charged choline headgroup of the lipid engages in cation-pi interactions within a cage formed by the faces of three aromatic residues. These binding determinants and those for the phosphoryl group may be exposed to the lipid headgroup at the membrane-water interface by a conformational change involving the amphipathic C-terminal helix and an Omega-loop. The structures presented here provide a basis for rationalizing the specificity of PC-TP for PtdCho and may identify common features used by START proteins to bind their hydrophobic ligands.
Many cargoes destined for nuclear import carry nuclear localization signals that are recognized by karyopherins (Kaps). We present methods to quantitate import rates and measure Kap and cargo concentrations in single yeast cells in vivo, providing new insights into import kinetics. By systematically manipulating the amounts, types, and affinities of Kaps and cargos, we show that import rates in vivo are simply governed by the concentrations of Kaps and their cargo and the affinity between them. These rates fit to a straightforward pump–leak model for the import process. Unexpectedly, we deduced that the main limiting factor for import is the poor ability of Kaps and cargos to find each other in the cytoplasm in a background of overwhelming nonspecific competition, rather than other more obvious candidates such as the nuclear pore complex and Ran. It is likely that most of every import round is taken up by Kaps and nuclear localization signals sampling other cytoplasmic proteins as they locate each other in the cytoplasm.
The Star (steroidogenic acute regulatory protein)-related transfer (START) domain superfamily is characterized by a distinctive lipid-binding motif. START domains typically reside in multidomain proteins, suggesting their function as lipid sensors that trigger biological activities. Phosphatidylcholine transfer protein (PC-TP, also known as StarD2) is an example of a START domain minimal protein that consists only of the lipidbinding motif. PC-TP, which binds phosphatidylcholine exclusively, is expressed during embryonic development and in several tissues of the adult mouse, including liver. Although it catalyzes the intermembrane exchange of phosphatidylcholines in vitro, this activity does not appear to explain the various metabolic alterations observed in mice lacking PC-TP. Here we demonstrate that PC-TP function may be mediated via interacting proteins. Yeast two-hybrid screening using libraries prepared from mouse liver and embryo identified Them2 (thioesterase superfamily member 2) and the homeodomain transcription factor Pax3 (paired box gene 3), respectively, as PC-TP-interacting proteins. These were notable because the START domain superfamily contains multidomain proteins in which the START domain coexists with thioesterase domains in mammals and with homeodomain transcription factors in plants. Interactions were verified in pulldown assays, and colocalization with PC-TP was confirmed within tissues and intracellularly. The acyl-CoA thioesterase activity of purified recombinant Them2 was markedly enhanced by recombinant PC-TP. In tissue culture, PC-TP coactivated the transcriptional activity of Pax3. These findings suggest that PC-TP functions as a phosphatidylcholine-sensing molecule that engages in diverse regulatory activities that depend upon the cellular expression of distinct interacting proteins. Phosphatidylcholine transfer protein (PC-TP)5 is a soluble lipid-binding protein with high specificity for phosphatidylcholines (1, 2). Whereas PC-TP promotes intermembrane exchange of phosphatidylcholines in vitro, its physiological function in vivo is not well understood (3). Studies in tissue culture and knock-out mice have demonstrated physiological roles for PC-TP in hepatobiliary lipid homeostasis, reverse cholesterol transport, and high density lipoprotein metabolism (3). However, these effects do not appear to be fully explained by the phosphatidylcholine transfer activity of PC-TP.PC-TP (also known as StarD2) is a member of a steroidogenic acute regulatory protein-related transfer (START) domain protein superfamily (4). START domains are conserved motifs that bind hydrophobic ligands. Proteins that contain START domains participate in intracellular lipid transport, lipid metabolism, and cellular signaling (5-7). START domain proteins are expressed from bacteria to higher organisms but are most numerous in plants (8).START domains largely reside within multidomain proteins, suggesting that binding of a hydrophobic ligand might regulate activity of another domain within the same protein. By cont...
New Zealand obese (NZO/HlLt) male mice develop polygenic diabetes and altered phosphatidylcholine metabolism. The gene encoding phosphatidylcholine transfer protein (PC-TP) is sited within the support interval for Nidd3, a recessive NZO-derived locus on Chromosome 11 identified by prior segregation analysis between NZO/HlLt and NON/Lt. Sequence analysis revealed that the NZO-derived PC-TP contained a non-synonymous point mutation that resulted in an Arg120His substitution, which was shared by the related NZB/BlNJ and NZW/LacJ mouse strains. Consistent with the structure-based predictions, functional studies demonstrated that Arg120His PC-TP was inactive, suggesting that this mutation contributes to the deficiencies in phosphatidylcholine metabolism observed in NZO mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.