The morphology of strains of Skeletonema Greville emend Sarno et Zingone was examined in LM, TEM, and SEM and compared with sequence data from nuclear small subunit rDNA and partial large subunit rDNA. Eight distinct entities were identified, of which four were known: S. menzelii Guillard, Carpenter et Reimann; S. pseudocostatum Medlin emend. Zingone et Sarno; S. subsalsum (Cleve) Bethge; and S. tropicum Cleve. The other four species were new: S. dohrnii Sarno et Kooistra sp. nov., S. grethae Zingone et Sarno sp. nov., S. japonicum Zingone et Sarno sp. nov., and S. marinoi Sarno et Zingone sp. nov. Skeletonema species fell into four morphologically distinct groups corresponding to four lineages in the small subunit and large subunit trees. Lineage I included S. pseudocostatum, S. tropicum, S. grethae, and S. japonicum. All have external processes of the fultoportulae with narrow tips that connect with those of sibling cells via fork‐, knot‐, or knuckle‐ like junctions. Lineage II included only the solitary species S. menzelii. Lineage III comprised S. dohrnii and S. marinoi. This latter pair have flattened and flared extremities of the processes of the fultoportulae, which interdigitate with those of contiguous valves without forming knots or knuckles. Lineage IV only contained the brackish water species S. subsalsum. Some species also differ in their distribution and seasonal occurrence. These findings challenge the concept of S. costatum as a single cosmopolitan and opportunistic species and calls for reinterpretation of the vast body of research data based on this species.
SUMMARY: The annual cycle of plankton was studied over 14 years from 1984 to 2000 at a coastal station in the Gulf of Naples, with the aim of assessing seasonal patterns and interannual trends. Phytoplankton biomass started increasing over the water column in February-early March, and generally achieved peak values in the upper layers in late spring. Another peak was often recorded in autumn. Diatoms and phytoflagellates dominated for the largest part of the year. Ciliates showed their main peaks in phase with phytoplankton and were mainly represented by small (< 30 µm) naked choreotrichs. Mesozooplankton increased in March-April, reaching maximum concentrations in summer. Copepods were always the most abundant group, followed by cladocerans in summer. At the interannual scale, a high variability and a decreasing trend were recorded over the sampling period for autotrophic biomass. Mesozooplankton biomass showed a less marked interannual variability. From 1995 onwards, phytoplankton populations increased in cell number but decreased in cell size, with intense blooms of small diatoms and undetermined coccoid species frequently observed in recent years. In spite of those interannual variations, the different phases of the annual cycle and the occurrence of several plankton species were remarkably regular.Key words: Mediterranean Sea, phytoplankton, ciliates, mesozooplankton, seasonal cycle, long term series. RESUMEN: PATRONES ESTACIONALES EN LAS COMUNIDADES PLANCTÓNICAS EN UNA SERIE TEMPORAL PLURIANUAL EN UNA LOCALIDAD COSTERA DEL MEDITERRÁNEO (GOLFO DE NÁPOLES): UN INTENTO DE DISCERNIR RECURRENCIAS Y TENDENCIAS.-El ciclo anual del plancton se estudió a lo largo de 14 años, desde 1984 a 2000, en una estación costera del golfo de Nápoles, con el objetivo de discernir pautas estacionales y tendencias interanuales. La biomasa fitoplanctónica empezaba a aumentar en la columna de agua en febrero-primeros de marzo, y generalmente alcanzaba valores máximos en las capas superiores a finales de primavera. Se solía registrar otro máximo en otoño. Las diatomeas y los fitoflagelados dominaron durante la mayor parte del año. Los ciliados presentaron sus máximos principales en fase con el fitoplancton y estuvieron representados principalmente por pequeños (< 30 µm) coreotricos desnudos. El mesozooplancton aumentó en marzo-abril, llegando a concentraciones máximas en verano. Los copépodos fueron siempre el grupo más abundante, seguidos de los cladóceros en verano. A la escala interanual, la biomasa autotrófica registró una elevada variabilidad y una tendencia decreciente a lo largo del período de muestreo. La biomasa del mesozooplancton mostró una variabilidad interanual menos marcada. Desde 1995 en adelante, las poblaciones de fitoplancton aumentaron en número de células, pero el tamaño celular se redujo, y en años recientes se han observado floraciones intensas de diatomeas pequeñas y de especies cocoides no determinadas. A pesar de estas variaciones interanuales, las distintas fases del ciclo anual y la presencia de varias es...
We tracked temporal changes in protist diversity at the Long Term Ecological Research (LTER) station MareChiara in the Gulf of Naples (Mediterranean Sea) on eight dates in 2011 using a metabarcoding approach. Illumina analysis of the V4 and V9 fragments of the 18S rDNA produced 869 522 and 1 410 071 sequences resulting in 6517 and 6519 OTUs, respectively. Marked compositional variations were recorded across the year, with less than 2% of OTUs shared among all samples and similar patterns for the two marker tags. Alveolata, Stramenopiles and Rhizaria were the most represented groups. A comparison with light microscopy data indicated an over-representation of Dinophyta in the sequence dataset, whereas Bacillariophyta showed comparable taxonomic patterns between sequence and light microscopy data. Shannon diversity values were stable from February to September, increasing thereafter with a peak in December. Community variance was mainly explained by seasonality (as temperature), trophic status (as chlorophyll a), and influence of coastal waters (as salinity). Overall, the background knowledge of the system provided a sound context for the result interpretation, showing that LTER sites provide an ideal setting for high-throughput sequencing (HTS) metabarcoding characterisation of protist assemblages and their relationships with environmental variations.
The genus Pseudo-nitzschia includes a number of species responsible for blooms in coastal and open waters worldwide. P. delicatissima, a species reported as a potential source of amnesic shellfish poisoning (ASP), reaches high concentrations in the Gulf of Naples (Mediterranean Sea), where it regularly blooms in spring and, at times, in autumn. We assessed both intra-and interindividual genetic diversity of this species before and during a bloom (February to April 2001) by sequencing the internal transcribed spacer regions (ITS1 and ITS2) and the 5.8S gene of the nuclear ribosomal DNA. PCR products obtained from 70 strains were cloned and several ITS copies were sequenced for each strain to assess intra-individual polymorphism. Phylogenies showed the presence of 5 distinct, well-supported lineages within what was considered to be a single morphospecies. Genetic diversity was higher in pre-bloom conditions, while all strains collected at the height of the bloom clustered within a single major clade. Ultrastructural investigations carried out on selected strains revealed morphological features slightly different from the ones typical for P. delicatissima only in 1 strain, outside the major clade. Our results, supported by the analysis of the hypervariable domains of LSU (large subunit) rDNA carried out on selected strains, suggest the presence of cryptic diversity within P. delicatissima. Such diversity could in fact explain the existence of toxic and nontoxic strains within the same species and the occasional mismatches between 'species-specific' molecular probes and target species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.