The greenhouse gases concentration in the atmosphere have significantly increased since the beginning of the Industrial Revolution. The most important greenhouse gases are CO2, CH4 and N2O, with CH4 and N2O presenting global warming potentials 25 and 298 times higher than CO2, respectively. Most of the N2O emissions take place in soils and are related with agricultural activities. So, this review article aimed at presenting the mechanisms of N2O formation and emission in agricultural soils, as well as gathering and discussing information on how soil management practices may be used to reduce such emissions. The N2O formation in the soil occurs mainly through nitrification and denitrification processes, which are influenced by soil moisture, temperature, oxygen concentration, amount of available organic carbon and nitrogen and soil C/N ratio. Among these factors, those related to soil could be easily altered by management practices. Therefore, understanding the processes of N2O formation in soils and the factors influencing these emissions is fundamental to develop efficient strategies to reduce N2O emissions in agricultural soils.
Among the main greenhouse gases (CO 2 , CH 4 and N 2 O), N 2 O has the highest global warming potential. N 2 O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N 2 O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (São Paulo state) and Goianésia (Goiás state). In Piracicaba, N 2 O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha −1 of N. From there on, emissions exponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goianésia, N 2 O emissions were lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha −1 . This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N 2 O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies.
Anthropogenic forest disturbance and land use change (LUC) in the Amazon region is the main source of greenhouse gas emissions to the atmosphere in Brazil, due to the carbon (C) and nitrogen (N) emitted from vegetation clearance. Land use conversion associated with management practices plays a key role in the distribution and origin of C in different soil organic matter (SOM) fractions. Here, we show how changing land use systems have influenced soil C and N stocks, SOM physical fractions, and the origin of SOM in the Santarém region of the eastern Brazilian Amazon. Soil C and N stocks were calculated for the surface layer of 0-30 cm. Anthropogenic disturbances to the standing forest, such as selective logging and wildfires, led to significant declines in soil C and N stocks. However, in the long-term, the conversion of the Amazon forest to pasture did not have a noticeable effect on soil C and N stocks, presumably because of additional inputs from pasture grasses. However, the conversion to cropland did lead to reductions in soil C and N content. According to the physical fractionation of SOM, LUC altered SOM quality, but silt and clay remained the combined fraction that contributed the most to soil C storage. Our results emphasize the importance of implementing more sustainable forest management systems, whilst also calling further attention to the need for fire monitoring systems, helping to ensure the resilience of C and N stocks and sequestration in forest soils; thereby contributing towards urgently needed ongoing efforts to mitigate climate change.
RESUMOA cana-de-açúcar é a principal cultura utilizada na produção de etanol biocombustível no Brasil e sua colheita pode ser feita com ou sem queima das folhas, aumentando ou diminuindo a emissão de gases do efeito estufa e a deposição de C no solo. Por meio deste trabalho, avaliou-se o efeito de sistemas de colheita de cana-de-açúcar (com e sem queima da palha, com um, três e seis anos após a última reforma do canavial) sobre os teores e estoques de C no solo, a qualidade física da matéria orgânica e a imobilização de C na biomassa microbiana do solo. As áreas de colheita sem queima apresentaram maior teor de C na camada superficial e maiores estoques de C, independentemente do tempo após a última reforma. Diferenças na qualidade física da matéria orgânica ocorreram principalmente na fração com tamanho entre 53 e 75 µ µ µ µ µm, na qual a proporção de C foi maior nas áreas sem queima. Na camada de 0-10 cm, o sistema sem queima apresentou maior teor de C microbiano. A colheita sem queima da palha é eficiente em acumular C em formas que possuem alto tempo de residência no solo.Termos de indexação: aquecimento global, cana crua, fracionamento físico, manejo do solo, matéria orgânica do solo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.