Loss of heterozygosity (LOH) at chromosome 3p21.3 is one of the most prevalent genetic disturbances occurring at the earliest stage of tumor development for a wide variety of human cancers, culminated in lung cancer. The 19 genes residing at 3p21.3 have been vigorously characterized for tumor suppressor activity and gene inactivation mechanism because of their potentially significant merits of clinical applications. Many of these 19 genes have been shown to manifest various growth inhibitory properties, however none of them are inactivated by coding mutations in their remaining allele as in the Knudson's two- hits hypothesis. Thus far the most prevailing, alternative gene inactivation mechanism known for the 3p21.3 TSGs is epigenetic silencing by promoter hypermethylation. Previously, we have focused our investigation on one of the 19 genes at 3p21.3, H37/RBM5, and demonstrated its tumor suppressor activity both in vitro and in vivo as well as its mRNA/protein expression loss from the remaining allele in a majority of the primary lung tumors examined. The current study tested our hypothesis that the H37 inactivation in primary lung tumors may, as seen in most of the other 3p21.3 TSGs, be due to hypermethylation in its promoter CpG islands. Contrary to this most plausible postulation, however, we found no evidence of epigenetic gene silencing for the H37 TSG. Here we suggest some of the possible, further- alternative means of the H37 gene expression loss in tumor, including defects in transcription and post-transcriptional/translational modifications as well as mechanisms related to haploinsufficiency.
SummaryAllele loss and genetic alteration in chromosome 3p, particularly in 3p21.3 region, are the most frequent and the earliest genomic abnormalities found in lung cancer. Multiple 3p21.3 genes exhibit various degrees of tumour suppression activity suggesting that 3p21.3 genes may function as an integrated tumour suppressor region through their diverse biological activities. We have previously demonstrated growth inhibitory effects and tumour suppression mechanism of the H37/RBM5 gene which is one of the 19 genes residing in the 370kb minimal overlap region at 3p21.3. In the current study, in an attempt to find, if any, mutations in the H37 coding region in lung cancer cells, we compared nucleotide sequences of the entire H37 gene in tumour vs. adjacent normal tissues from 17 non-small cell lung cancer (NSCLC) patients. No mutations were detected, instead, we found the two silent single nucleotide polymorphisms (SNPs), C1138T and C2185T, within the coding region of the H37 gene. In addition, we found that specific allele types at these SNP positions are correlated with different histological subtypes of NSCLC; tumours containing heterozygous alleles (C+T) at these SNP positions are more likely to be associated with adenocarcinoma (AC) whereas homozygous alleles (either C or T) are associated with squamous cell carcinoma (SCC) (p=0.0098). We postulate that, these two silent polymorphisms may be in linkage disequilibrium (LD) with a disease causative allele in the 3p21.3 tumour suppressor region which is packed with a large number of important genes affecting lung cancer development. In addition, because of prevalent loss of heterozygosity (LOH) detected at 3p21.3 which precedes lung cancer initiation, these SNPs may be developed into a marker screening for the high risk individuals. Keywords lung cancer; H37/RBM5/Luca15; single nucleotide polymorphism; 3p21.3; tumour suppressor gene; linkage disequilibrium; loss of heterozygosity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.