One of the key challenges in two-dimensional (2D) materials is to go beyond graphene, a prototype 2D polymer (2DP), and to synthesize its organic analogues with structural control at the atomic- or molecular-level. Here we show the successful preparation of porphyrin-containing monolayer and multilayer 2DPs through Schiff-base polycondensation reaction at an air–water and liquid–liquid interface, respectively. Both the monolayer and multilayer 2DPs have crystalline structures as indicated by selected area electron diffraction. The monolayer 2DP has a thickness of∼0.7 nm with a lateral size of 4-inch wafer, and it has a Young's modulus of 267±30 GPa. Notably, the monolayer 2DP functions as an active semiconducting layer in a thin film transistor, while the multilayer 2DP from cobalt-porphyrin monomer efficiently catalyses hydrogen generation from water. This work presents an advance in the synthesis of novel 2D materials for electronics and energy-related applications.
Molybdenum carbide (MoC) based catalysts were found to be one of the most promising electrocatalysts for hydrogen evolution reaction (HER) in acid media in comparison with Pt-based catalysts but were seldom investigated in alkaline media, probably due to the limited active sites, poor conductivity, and high energy barrier for water dissociation. In this work, MoC-embedded nitrogen-doped porous carbon nanosheets (MoC@2D-NPCs) were successfully achieved with the help of a convenient interfacial strategy. As a HER electrocatalyst in alkaline solution, MoC@2D-NPC exhibited an extremely low onset potential of ∼0 mV and a current density of 10 mA cm at an overpotential of ∼45 mV, which is much lower than the values of most reported HER electrocatalysts and comparable to the noble metal catalyst Pt. In addition, the Tafel slope and the exchange current density of MoC@2D-NPC were 46 mV decade and 1.14 × 10 A cm, respectively, outperforming the state-of-the-art metal-carbide-based electrocatalysts in alkaline media. Such excellent HER activity was attributed to the rich MoC/NPC heterostructures and synergistic contribution of nitrogen doping, outstanding conductivity of graphene, and abundant active sites at the heterostructures.
Carbon electrocatalysts consisting of metal complexes such as MN or MS are promising alternatives to high-cost Pt catalysts for the hydrogen evolution reaction (HER). However, the exact HER active sites remain elusive. Here, molecular metal dithiolene-diamine (MS N , M=Co and Ni), metal bis(dithiolene) (MS ), and metal bis(diamine) (MN ) complexes were selectively incorporated into carbon-rich 2D metal-organic frameworks (2D MOFs) as model carbon electrocatalysts. The 2D MOF single layers, powders, and composites with graphene were thus prepared and showed definite active sites for H generation. The electrocatalytic HER activity of the 2D MOF-based catalysts with different metal complexes follow the order of MS N >MN >MS . Moreover, the protonation preferentially occurred on the metal atoms, and the concomitant heterolytic elimination of H was favored on the M-N units in the MS N active centers. The results provide an in-depth understanding of the catalytic active sites, thus making way for the future development of metal complexes in carbon-rich electrode materials for energy generation.
Metal–organic frameworks (MOFs) have so far been highlighted for their potential roles in catalysis, gas storage and separation. However, the realization of high electrical conductivity (>10−3 S cm−1) and magnetic ordering in MOFs will afford them new functions for spintronics, which remains relatively unexplored. Here, we demonstrate the synthesis of a two-dimensional MOF by solvothermal methods using perthiolated coronene as a ligand and planar iron-bis(dithiolene) as linkages enabling a full π-d conjugation. This 2D MOF exhibits a high electrical conductivity of ~10 S cm−1 at 300 K, which decreases upon cooling, suggesting a typical semiconductor nature. Magnetization and 57Fe Mössbauer experiments reveal the evolution of ferromagnetism within nanoscale magnetic clusters below 20 K, thus evidencing exchange interactions between the intermediate spin S = 3/2 iron(III) centers via the delocalized π electrons. Our results illustrate that conjugated 2D MOFs have potential as ferromagnetic semiconductors for application in spintronics.
Density functional calculations applying periodic boundary conditions have been performed to investigate adsorption and cracking of light alkanes (C 3 −C 6 ) on zeolite H-ZSM-5. Intrinsic energy barriers were obtained from singlepoint calculations by applying the revised form of the PBE functional (RPBE) to structures optimized on the PBE potential energy surface. Dispersion interactions were accounted for by adding a damped dispersion term to the PBE energies. The dependence of the adsorption enthalpy on the carbon number is in agreement with experimental observation. From intrinsic energy barriers, intrinsic rate coefficients were calculated by means of transition state theory. The dependence of the intrinsic enthalpy and entropy of activation on the carbon number is discussed and compared to experimental observations. Transition path sampling was employed to unravel qualitatively the reaction mechanism for cracking of butane. Monte Carlo simulations in the canonical ensemble were conducted to estimate the temperature dependence of the adsorption enthalpy and entropy of propane to nhexane. These quantities are not constant, as is often assumed in the interpretation of experimental data but become less negative with increasing temperature. It is shown how the selection of adsorption parameters influences the extraction of intrinsic rate parameters from experimental rate data. Based on the present analysis, an alternative partitioning of the experimentally accessible apparent entropy of activation into contributions from adsorption and intrinsic reaction is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.