Uremic encephalopathy is a severe complication of renal failure. The underlying pathogenesis is unknown although several mechanisms have been suggested. Renal failure causes oxidative stress leading to cardiovascular complications. It has been suggested as the potential mediator of uremic encephalopathy as well, but it is largely unknown whether brain tissue itself undergoes oxidative damage in uremia. The aim of our experiment was to analyze oxidative stress markers in different brain regions in an animal model of acute kidney injury (AKI). AKI was induced by ischemia-reperfusion injury in male Wistar rats. Urine was collected in metabolic cages after 24 h. Samples of plasma and several brain regions were collected after 48 h. Markers of lipid peroxidation, protein oxidation and total antioxidant capacity were assessed. Renal failure was confirmed by high plasma creatinine, urea and urinary albumin to creatinine ratio. Our data confirmed increased systemic oxidative stress in the AKI group with plasma concentrations of markers of oxidative damage being twice as high compared to the sham-operated control group. No effect was seen in the urine. In the hippocampus, lipid and protein oxidation was higher, while antioxidant capacity was lower in the rats with AKI. Lipid oxidation markers in the frontal cortex were higher by 33%. No differences to controls were found in the cerebellum and hypothalamus. In conclusion, our results indicate that AKI leads to oxidative stress in the brain, especially in the hippocampus and in the frontal cortex. This kidney-brain crosstalk mediated by increased oxidative stress might explain some of the symptoms of uremic encephalopathy. The causes and consequences of oxidative damage observed in the brain during AKI remain to be elucidated.
The case of a 55-year-old man who attempted suicide by ingesting <100 mL of 28% sodium chlorite solution is presented. On arrival in the intensive care unit, the patient appeared cyanotic with lowered consciousness and displayed anuria and chocolate brown serum.Initial laboratory tests revealed 40% of methemoglobin. The formation of methemoglobin was effectively treated with methylene blue (10% after 29 hours).To remove the toxin, and because of the anuric acute renal failure, the patient received renal replacement therapy. Despite these therapeutic measures, the patient developed hemolytic anemia and disseminated intravascular coagulation, which were treated with red blood cell transfusion and intermittent hemodialysis. These interventions led to the improvement of his condition and the patient eventually fully recovered. Patient gave written informed consent.This is the third known case of chlorite poisoning that has been reported. Based upon this case, we suggest the management of sodium chlorite poisoning to comprise the early administration of methylene blue, in addition to renal replacement therapy and transfusion of red blood cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.