A dramatic increase in the use and dependence of prescription opioids has occurred within the last 10 years. The consequences of long-term prescription opioid use and dependence on the brain are largely unknown, and any speculation is inferred from heroin and methadone studies. Thus, no data have directly demonstrated the effects of prescription opioid use on brain structure and function in humans. To pursue this issue, we used structural magnetic resonance imaging, diffusion tensor imaging and resting-state functional magnetic resonance imaging in a highly enriched group of prescription opioid-dependent patients [(n=10); from a larger study on prescription opioid dependent patients (n=133)] and matched healthy individuals (n=10) to characterize possible brain alterations that may be caused by long-term prescription opioid use. Criteria for patient selection included: (i) no dependence on alcohol or other drugs; (ii) no comorbid psychiatric or neurological disease; and (iii) no medical conditions, including pain. In comparison to control subjects, individuals with opioid dependence displayed bilateral volumetric loss in the amygdala. Prescription opioid-dependent subjects had significantly decreased anisotropy in axonal pathways specific to the amygdala (i.e. stria terminalis, ventral amygdalofugal pathway and uncinate fasciculus) as well as the internal and external capsules. In the patient group, significant decreases in functional connectivity were observed for seed regions that included the anterior insula, nucleus accumbens and amygdala subdivisions. Correlation analyses revealed that longer duration of prescription opioid exposure was associated with greater changes in functional connectivity. Finally, changes in amygdala functional connectivity were observed to have a significant dependence on amygdala volume and white matter anisotropy of efferent and afferent pathways of the amygdala. These findings suggest that prescription opioid dependence is associated with structural and functional changes in brain regions implicated in the regulation of affect and impulse control, as well as in reward and motivational functions. These results may have important clinical implications for uncovering the effects of long-term prescription opioid use on brain structure and function.
Complex regional pain syndrome (CRPS) in paediatric patients is clinically distinct from the adult condition in which there is often complete resolution of its signs and symptoms within several months to a few years. The ability to compare the symptomatic and asymptomatic condition in the same individuals makes this population interesting for the investigation of mechanisms underlying pain and other symptoms of CRPS. We used fMRI to evaluate CNS activation in paediatric patients (9-18 years) with CRPS affecting the lower extremity. Each patient underwent two scanning sessions: once during an active period of pain (CRPS(+)), and once after symptomatic recovery (CRPS(-)). In each session, mechanical (brush) and thermal (cold) stimuli were applied to the affected region of the involved limb and the corresponding mirror region of the unaffected limb. Two fundamental fMRI analyses were performed: (i) within-group analysis for CRPS(+) state and CRPS(-) state for brush and cold for the affected and unaffected limbs in each case; (ii) between-group (contrast) analysis for activations in affected and unaffected limbs in CRPS or post-CRPS states. We found: (i) in the CRPS(+) state, stimuli that evoked mechanical or cold allodynia produced patterns of CNS activation similar to those reported in adult CRPS; (ii) in the CRPS(+) state, stimuli that evoked mechanical or cold allodynia produced significant decreases in BOLD signal, suggesting pain-induced activation of endogenous pain modulatory systems; (iii) cold- or brush-induced activations in regions such as the basal ganglia and parietal lobe may explain some CNS-related symptoms in CRPS, including movement disorders and hemineglect/inattention; (iv) in the CRPS(-) state, significant activation differences persisted despite nearly complete elimination of evoked pain; (v) although non-noxious stimuli to the unaffected limb were perceived as equivalent in CRPS(+) and CRPS(-) states, the same stimulus produced different patterns of activation in the two states, suggesting that the 'CRPS brain' responds differently to normal stimuli applied to unaffected regions. Our results suggest significant changes in CNS circuitry in patients with CRPS.
The behavioral response to pain is driven by sensory and affective components, each of which is mediated by the CNS. Subjective pain ratings are used as readouts when appraising potential analgesics; however, pain ratings alone cannot enable a characterization of CNS pain circuitry during pain processing or how this circuitry is modulated pharmacologically. Having a more objective readout of potential analgesic effects may allow improved understanding and detection of pharmacological efficacy for pain. The pharmacological/functional magnetic resonance imaging (phMRI/fMRI) methodology can be used to objectively evaluate drug action on the CNS. In this context, we aimed to evaluate two drugs that had been developed as analgesics: one that is efficacious for pain (buprenorphine (BUP)) and one that failed as an analgesic in clinical trials aprepitant (APREP). Using phMRI, we observed that activation induced solely by BUP was present in regions with m-opioid receptors, whereas APREP-induced activation was seen in regions expressing NK 1 receptors. However, significant pharmacological modulation of functional connectivity in pain-processing pathways was only observed following BUP administration. By implementing an evoked pain fMRI paradigm, these drugs could also be differentiated by comparing the respective fMRI signals in CNS circuits mediating sensory and affective components of pain. We report a correlation of functional connectivity and evoked pain fMRI measures with pain ratings as well as peak drug concentration. This investigation demonstrates how CNS-acting drugs can be compared, and how the phMRI/fMRI methodology may be used with conventional measures to better evaluate candidate analgesics in small subject cohorts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.