The alpha taxonomy of the globally distributed shark genus Squalus has been under intense investigation recently, and many new species have been described over the last decade. However, taxonomic uncertainty remains about several taxa. Without consistent nomenclature and the ability to reliably distinguish between the different Squalus species, basic data collection, downstream conservation and management efforts are seriously compromised. To aid in clarifying the taxonomic status of Squalus species in the eastern Atlantic and Mediterranean, we assessed species diversity at the molecular level and evaluated the consistency in species identification in the region. Samples from all nominal Squalus species recognized in the above regions were collected in an international effort and sequenced for regions of the mitochondrial COI and ND2 genes. These data were further analysed alongside publicly available sequences, including 19 of the 26 Squalus species globally recognized, to compare the regional genus‐level diversity with that found elsewhere. Our results confirm inconsistent species identification in the eastern Atlantic and Mediterranean Squalus, particularly concerning S. blainville and S. megalops, and reinforce the need to revise the status of S. megalops and S. mitsukurii as they may include several distinct species distributed around the world. The status of S. blainville is also discussed in the light of the current findings and its problematic taxonomic history.
Despite a high species diversity, skates (Rajiformes) exhibit remarkably conservative morphology and ecology. Limited trait variations occur within and between species, and cryptic species have been reported among sister and non-sister taxa, suggesting that species complexes may be subject to stabilising selection. Three sibling species are currently recognised in the Raja miraletus complex: (i) R. miraletus occurring along the Portuguese and Mediterranean coasts, (ii) R. parva in the Central-Eastern Atlantic off West Africa and (iii) R. ocellifera in the Western Indian Ocean off South Africa. In the present study, the genetic variation at mitochondrial and nuclear markers was estimated in the species complex by analysing 323 individuals sampled across most of its geographical distribution area to test the hypothesis that restricted gene flow and genetic divergence within species reflect known climate and bio-oceanographic discontinuities. Our results support previous morphological studies and confirm the known taxonomic boundaries of the three recognised species. In addition, we identified multiple weakly differentiated clades in the Northeastern Atlantic Ocean and Mediterranean, at least two additional cryptic taxa off Senegal and Angola, a pronounced differentiation of ancient South African clades. The hidden genetic structure presented here may represent a valuable support to species’ conservation action plans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.