The (de)lithiation process and resulting atomic and nanoscale morphological changes of an a-Si/ c-FeSi 2 /graphite composite negative electrode are investigated within a Li-ion full cell at several current rates (Crates) and after prolonged cycling by simultaneous operando synchrotron wide-angle and small-angle X-ray scattering (WAXS and SAXS). WAXS allows the probing of the local crystalline structure. In particular, the observation of the graphite (de)lithiation process, revealed by the Li x C 6 Bragg reflections, enables access to the respective capacities of both graphite and active silicon. Simultaneously and independently, information on the silicon state of (de)lithiation and nanoscale morphology (1 to 60 nm) is obtained through SAXS. During lithiation, the SAXS intensity in the region corresponding to characteristic distances within the a-Si/c-FeSi 2 domains increases. The combination of the SAXS/WAXS measurements over the course of several charge/ discharge cycles, in pristine and aged electrodes, provides a complete picture of the C-rate-dependent sequential (de)lithiation mechanism of the a-Si/c-FeSi 2 /graphite anode. Our results indicate that, within the composite electrode, the active silicon volume does not increase linearly with lithium insertion and point toward the important role of the electrode morphology to accommodate the nanoscale silicon expansion, an effect that remains beneficial after cell aging and most probably explains the excellent performance of the composite material.
Failure mechanisms associated with silicon‐based anodes are limiting the implementation of high‐capacity lithium‐ion batteries. Understanding the aging mechanism that deteriorates the anode performance and introducing novel‐architectured composites offer new possibilities for improving the functionality of the electrodes. Here, the characterization of nano‐architectured composite anode composed of active amorphous silicon domains (a‐Si, 20 nm) and crystalline iron disilicide (c‐FeSi2, 5–15 nm) alloyed particles dispersed in a graphite matrix is reported. This unique hierarchical architecture yields long‐term mechanical, structural, and cycling stability. Using advanced electron microscopy techniques, the nanoscale morphology and chemical evolution of the active particles upon lithiation/delithiation are investigated. Due to the volumetric variations of Si during lithiation/delithiation, the morphology of the a‐Si/c‐FeSi2 alloy evolves from a core‐shell to a tree‐branch type structure, wherein the continuous network of the active a‐Si remains intact yielding capacity retention of 70% after 700 cycles. The root cause of electrode polarization, initial capacity fading, and electrode swelling is discussed and has profound implications for the development of stable lithium‐ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.