Medulloblastoma is a malignant childhood cerebellar tumour comprised of distinct molecular subgroups. Whereas genomic characteristics of these subgroups are well defined, the extent to which cellular diversity underlies their divergent biology and clinical behaviour remains largely unexplored. We used single-cell transcriptomics to investigate intra-and inter-tumoural heterogeneity in twenty-five medulloblastomas spanning all molecular subgroups. WNT, SHH, and Group 3 tumours comprised subgroup-specific undifferentiated and differentiated neuronallike malignant populations, whereas Group 4 tumours were exclusively comprised of differentiated neuronal-like neoplastic cells. SHH tumours closely resembled granule neurons of varying differentiation states that correlated with patient age. Group 3 and Group 4 tumours exhibited a developmental trajectory from primitive progenitor-like to more mature neuronal-like cells, whose relative proportions distinguished these subgroups. Cross-species transcriptomics defined distinct glutamatergic populations as putative cells-of-origin for SHH and Group 4 subtypes. Collectively, these data provide novel insights into the cellular and developmental states underlying subtypespecific medulloblastoma biology. Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Li and colleagues report the genomic landscape of over 100 patients with relapsed acute lymphoblastic leukemia. Analysis of diagnosis-relapse-remission trios suggest that whereas early relapse is mediated by retained subclones, late relapse is driven by mutations induced by and conferring resistance to chemotherapy.
BackgroundSequencing errors are key confounding factors for detecting low-frequency genetic variants that are important for cancer molecular diagnosis, treatment, and surveillance using deep next-generation sequencing (NGS). However, there is a lack of comprehensive understanding of errors introduced at various steps of a conventional NGS workflow, such as sample handling, library preparation, PCR enrichment, and sequencing. In this study, we use current NGS technology to systematically investigate these questions.ResultsBy evaluating read-specific error distributions, we discover that the substitution error rate can be computationally suppressed to 10−5 to 10−4, which is 10- to 100-fold lower than generally considered achievable (10−3) in the current literature. We then quantify substitution errors attributable to sample handling, library preparation, enrichment PCR, and sequencing by using multiple deep sequencing datasets. We find that error rates differ by nucleotide substitution types, ranging from 10−5 for A>C/T>G, C>A/G>T, and C>G/G>C changes to 10−4 for A>G/T>C changes. Furthermore, C>T/G>A errors exhibit strong sequence context dependency, sample-specific effects dominate elevated C>A/G>T errors, and target-enrichment PCR led to ~ 6-fold increase of overall error rate. We also find that more than 70% of hotspot variants can be detected at 0.1 ~ 0.01% frequency with the current NGS technology by applying in silico error suppression.ConclusionsWe present the first comprehensive analysis of sequencing error sources in conventional NGS workflows. The error profiles revealed by our study highlight new directions for further improving NGS analysis accuracy both experimentally and computationally, ultimately enhancing the precision of deep sequencing.Electronic supplementary materialThe online version of this article (10.1186/s13059-019-1659-6) contains supplementary material, which is available to authorized users.
Neuropsychiatric disorders have a complex genetic architecture. Human genetic population-based studies have identified numerous heritable sequence and structural genomic variants associated with susceptibility to neuropsychiatric disease. However, these germline variants do not fully account for disease risk. During brain development, progenitor cells undergo billions of cell divisions to generate the ~80 billion neurons in the brain. The failure to accurately repair DNA damage arising during replication, transcription, and cellular metabolism amid this dramatic cellular expansion can lead to somatic mutations. Somatic mutations that alter subsets of neuronal transcriptomes and proteomes can, in turn, affect cell proliferation and survival and lead to neurodevelopmental disorders. The long life span of individual neurons and the direct relationship between neural circuits and behavior suggest that somatic mutations in small populations of neurons can significantly affect individual neurodevelopment. The Brain Somatic Mosaicism Network has been founded to study somatic mosaicism both in neurotypical human brains and in the context of complex neuropsychiatric disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.