Recent genomic studies have identified chromosomal rearrangements defining new subtypes of B-progenitor acute lymphoblastic leukemia (B-ALL), however many cases lack a known initiating genetic alteration. Using integrated genomic analysis of 1,988 childhood and adult cases, we describe a revised taxonomy of B-ALL, incorporating 23 subtypes defined by chromosomal rearrangements, sequence mutations, or heterogeneous genomic alterations, many of which show marked variation in prevalence according to age. Two subtypes have frequent alterations of the B lymphoid transcription factor gene PAX5. One, PAX5alt (7.4%), has diverse PAX5 alterations (rearrangements, intragenic amplifications or mutations), and a second subtype is defined by PAX5 p.Pro80Arg and biallelic PAX5 alterations. We show that p.Pro80Arg impairs B lymphoid development and promotes the development of B-ALL with biallelic Pax5 alteration in vivo. These results demonstrate the utility of transcriptome sequencing to classify B-ALL and reinforce the central role of PAX5 as a checkpoint in B lymphoid maturation and leukemogenesis.
Abnormal epigenetic regulation has been implicated in oncogenesis. We report here the identification of somatic mutations by exome sequencing in acute monocytic leukemia, the M5 subtype of acute myeloid leukemia (AML-M5). We discovered mutations in DNMT3A (encoding DNA methyltransferase 3A) in 23 of 112 (20.5%) cases. The DNMT3A mutants showed reduced enzymatic activity or aberrant affinity to histone H3 in vitro. Notably, there were alterations of DNA methylation patterns and/or gene expression profiles (such as HOXB genes) in samples with DNMT3A mutations as compared with those without such changes. Leukemias with DNMT3A mutations constituted a group of poor prognosis with elderly disease onset and of promonocytic as well as monocytic predominance among AML-M5 individuals. Screening other leukemia subtypes showed Arg882 alterations in 13.6% of acute myelomonocytic leukemia (AML-M4) cases. Our work suggests a contribution of aberrant DNA methyltransferase activity to the pathogenesis of acute monocytic leukemia and provides a useful new biomarker for relevant cases.
Purpose Philadelphia chromosome (Ph) -like acute lymphoblastic leukemia (ALL) is a high-risk subtype of childhood ALL characterized by kinase-activating alterations that are amenable to treatment with tyrosine kinase inhibitors. We sought to define the prevalence and genomic landscape of Ph-like ALL in adults and assess response to conventional chemotherapy. Patients and Methods The frequency of Ph-like ALL was assessed by gene expression profiling of 798 patients with B-cell ALL age 21 to 86 years. Event-free survival and overall survival were determined for Ph-like ALL versus non-Ph-like ALL patients. Detailed genomic analysis was performed on 180 of 194 patients with Ph-like ALL. Results Patients with Ph-like ALL accounted for more than 20% of adults with ALL, including 27.9% of young adults (age 21 to 39 years), 20.4% of adults (age 40 to 59 years), and 24.0% of older adults (age 60 to 86 years). Overall, patients with Ph-like ALL had an inferior 5-year event-free survival compared with patients with non-Ph-like ALL (22.5% [95% CI, 14.9% to 29.3%; n = 155] v 49.3% [95% CI, 42.8% to 56.2%; n = 247], respectively; P < .001). We identified kinase-activating alterations in 88% of patients with Ph-like ALL, including CRLF2 rearrangements (51%), ABL class fusions (9.8%), JAK2 or EPOR rearrangements (12.4%), other JAK-STAT sequence mutations (7.2%), other kinase alterations (4.1%), and Ras pathway mutations (3.6%). Eleven new kinase rearrangements were identified, including four involving new kinase or cytokine receptor genes and seven involving new partners for previously identified genes. Conclusion Ph-like ALL is a highly prevalent subtype of ALL in adults and is associated with poor outcome. The diverse range of kinase-activating alterations in Ph-like ALL has important therapeutic implications. Trials comparing the addition of tyrosine kinase inhibitors to conventional therapy are required to evaluate the clinical utility of these agents in the treatment of Ph-like ALL.
Philadelphia chromosome-like (Ph-like) acute lymphoblastic leukemia (ALL) is a high-risk subtype characterized by genomic alterations that activate cytokine receptor and kinase signaling. We examined the frequency and spectrum of targetable genetic lesions in a retrospective cohort of 1389 consecutively diagnosed patients with childhood B-lineage ALL with high-risk clinical features and/or elevated minimal residual disease at the end of remission induction therapy. The Ph-like gene expression profile was identified in 341 of 1389 patients, 57 of whom were excluded from additional analyses because of the presence of - (n = 46) or - (n = 11). Among the remaining 284 patients (20.4%), overexpression and rearrangement of (- or -) were identified in 124 (43.7%), with concomitant genomic alterations activating the JAK-STAT pathway (, ,) identified in 63 patients (50.8% of those with rearrangement). Among the remaining patients, using reverse transcriptase polymerase chain reaction or transcriptome sequencing, we identified targetable ABL-class fusions (, ,, and ) in 14.1%, rearrangements or fusions in 8.8%, alterations activating other JAK-STAT signaling genes (, ,) in 6.3% or other kinases (, ,) in 4.6%, and mutations involving the Ras pathway (, ,, ) in 6% of those with Ph-like ALL. We identified 8 new rearrangement partners for 4 kinase genes previously reported to be rearranged in Ph-like ALL. The current findings provide support for the precision-medicine testing and treatment approach for Ph-like ALL implemented in Children's Oncology Group ALL trials.
Mixed phenotype acute leukaemia (MPAL) is a high-risk subtype of leukaemia with myeloid and lymphoid features, limited genetic characterization, and a lack of consensus regarding appropriate therapy. Here we show that the two principal subtypes of MPAL, T/myeloid (T/M) and B/myeloid (B/M), are genetically distinct. Rearrangement of ZNF384 is common in B/M MPAL, and biallelic WT1 alterations are common in T/M MPAL, which shares genomic features with early T-cell precursor acute lymphoblastic leukaemia. We show that the intratumoral immunophenotypic heterogeneity characteristic of MPAL is independent of somatic genetic variation, that founding lesions arise in primitive haematopoietic progenitors, and that individual phenotypic subpopulations can reconstitute the immunophenotypic diversity in vivo. These findings indicate that the cell of origin and founding lesions, rather than an accumulation of distinct genomic alterations, prime tumour cells for lineage promiscuity. Moreover, these findings position MPAL in the spectrum of immature leukaemias and provide a genetically informed framework for future clinical trials of potential treatments for MPAL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.