Genitalia are morphologically variable across many taxa and in physical contact during intromission, but little is known about how variation in form correlates with function during copulation. Marine mammals offer important insights into the evolutionary forces that act on genital morphology because they have diverse genitalia and are adapted to aquatic living and mating. Cetaceans have a fibroelastic penis and muscular vaginal folds, while pinnipeds have a baculum and lack vaginal folds. We examined copulatory fit in naturally deceased marine mammals to identify anatomical landmarks in contact during copulation and the potential depth of penile penetration into the vagina. Excised penises were artificially inflated to erection with pressurized saline and compared with silicone vaginal endocasts and within excised vaginas in simulated copulation using high-resolution, diffusible iodine-based, contrast-enhanced computed tomography. We found evidence suggestive of both congruent and antagonistic genital coevolution, depending on the species. We suggest that sexual selection influences morphological shape. This study improves our understanding of how mechanical interactions during copulation influence the shape of genitalia and affect fertility, and has broad applications to other taxa and species conservation.
The baculum (os penis) has been extensively studied as a taxon-specific character in bats and other mammals but its mechanical function is still unclear. There is a wide consensus in the literature that the baculum is probably a sexually selected character. Using a novel approach combining postmortem manipulation and threedimensional (3D) imaging, we tested two functional hypotheses in the common noctule bat Nyctalus noctula, the common pipistrelle Pipistrellus pipistrellus, and Nathusius' pipistrelle Pipistrellus nathusii: (i) whether the baculum can protect the distal urethra and urethral opening from compression during erection and copulation; and (ii) whether the baculum and corpora cavernosa form a functional unit to support both the penile shaft and the more distal glans tip. In freshly dead or frozen and thawed bats, we compared flaccid penises with artificially 'erect' penises that were inflated with 10% formalin. Penises were stained with alcoholic iodine and imaged with a lab-based high-resolution x-ray microtomography system. Analysis of the 3D images enabled us to compare the changes in relative positions of the baculum, corpora cavernosa, urethra, and corpus spongiosum with one another between flaccid and 'erect' penises. Our results support both functional hypotheses, indicating that the baculum probably performs two different roles during erection. Our approach should prove valuable for comparing and testing the functions of different baculum morphologies in bats and other mammals. Moreover, we have validated an essential component of the groundwork necessary to extend this approach with finite element analysis for quantitative 3D biomechanical modeling of penis function.
Inflatable penises have evolved independently at least four times in amniotes, specifically in mammals, turtles, squamates, and the archosaurs. Males in these lineages therefore share the functional problem of building a penis out of soft and flexible tissues that can increase its flexural stiffness and resist bending during copulation. Research on penile erectile tissues in mammals and turtles shows that these two taxa have convergently evolved an axial orthogonal array of collagen fibers to reinforce the penis during erection and copulation; in both lineages, the collagen fibers in the array are crimped and folded in the flaccid penis. Collagen fiber straightening during erection increases the stiffness of the tissue and allows changes in penile radius that increase its second moment of area: both of these changes increase the flexural stiffness of the penis as a whole. And once erect, axial orthogonal arrays have the highest flexural stiffness of any fiber arrangement. The high degree of anatomical convergence (to the level of microanatomical features) within mammals and turtles suggests that the stiffness requirements for copulation produce an extremely restrictive selective regime in organisms that evolve inflatable penises.
Examination of histological sections from flaccid and artificially erected nine-banded armadillo (Dasypus novemcinctus) penises confirms that the mammalian corpus cavernosum is the first known biological hydrostat reinforced by collagen fibers arranged at 0°and 90°to its long axis. The morphology of this axial orthogonal fiber array affects the mechanical behavior of mammalian penises during erection and copulation. Specifically, the axial orthogonal array gives the erect penis a reproducible shape, maximum size and resistance to tensile, compressive, and bending forces. These features are more appropriate for the mechanical regime associated with copulation than those found in structures reinforced by crossed-helical fibers, although the axial orthogonal array also gives the corpus cavernosum a tendency to fail by kinking. Crimped collagen fibers in the flaccid array as well as three-dimensional folding of the wall in the flaccid corpus cavernosum allow the structure to expand during erection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.