A palladium-catalyzed multicomponent synthetic route to polysubstituted pyrroles from aryl iodides, imines, carbon monoxide, and alkynes is described. To develop this reaction, a series of mechanistic studies on the [Pd(allyl)Cl]2/P(t)Bu3 catalyzed synthesis of imidazolinium carboxylates from aryl iodides, imines, and carbon monoxide were first performed, including model reactions for each individual step in the transformation. These show that this reaction proceeds in a concurrent tandem catalytic fashion, and involves the in situ formation of acid chlorides, N-acyl iminium salts, and ultimately 1,3-dipoles, i.e., Münchnones, for subsequent cycloaddition. By employing a Pd(P(t)Bu3)2/Bu4NCl catalyst, this information was used to design the first four-component synthesis of Münchnones. Coupling the latter with 1,3-dipolar cycloaddition with electron deficient alkynes or alkenes can be used to generate diverse families of highly substituted pyrroles in good yield. This represents a modular and streamlined new approach to this class of heterocycles from readily accessible starting materials.
A three component reaction between imines, aryl iodides, and carbonmonoxide is developed which delivers 1,3‐dipoles prone for cycloaddition reactions with electron‐deficient terminal as well as internal alkynes or alkenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.