In this study, an electroactive polymer (EAP), poly(2,5-bis(N-methyl-N-hexylamino)phenylene vinylene) (BAM-PPV) was investigated as a potential alternative surface pretreatment for hexavalent chromium (Cr(VI))-based aerospace coatings. BAM-PPV was tested as a pretreatment coating on an aerospace aluminum alloy (AA2024-T3) substrate in combination with a non-Cr(VI) epoxy primer and a polyurethane Advanced Performance Coating (APC) topcoat. This testing was undertaken to determine BAM-PPV’s adhesion, corrosion-inhibition, compatibility and survivability in laboratory testing and during outdoor field-testing. BAM-PPV showed excellent adhesion and acceptable corrosion performance in laboratory testing. The BAM-PPV aerospace coating system (BAM-PPV, non-Cr(VI) epoxy primer and polyurethane APC topcoat) was field tested for one year on the rear hatch door of the United States Air Force C-5 cargo plane. After one year of field testing there was no evidence of delamination or corrosion of the BAM-PPV aerospace coating system.
Researchers at the Naval Air Warfare Center Weapons Division (NAWCWD) and Wright-Patterson Air Force Base (WPAFB) investigated poly[2-methoxy-5-(2’-ethylhexyloxy)-1,4-phenylene vinylene], (MEH-PPV) for its potential corrosion-inhibition properties on aerospace aluminum alloy AA2024-T3. Solution processing of the polymer, as well as adhesion testing and accelerated weathering tests were performed on MEH-PPV full military aerospace coatings. Wet and dry tape adhesion testing, as well as pencil hardness, impact flexibility and pneumatic adhesion tensile test instrument (PATTI) testing were used to demonstrate the adhesion performance of MEH-PPV on aluminum substrates. The results showed that MEH-PPV had acceptable adhesion characteristics when compared to hexavalent chromium (Cr(VI)) based coatings in all of these tests. Accelerated weathering analysis was performed on MEH-PPV coatings to determine their corrosion protection and weathering resistance capabilities. These tests included neutral salt spray (NSS) exposure and xenon-arc lamp testing. The results showed that while MEH-PPV does not exhibit significant color change after 500 hours of xenon arc lamp exposure, the polymer has poor corrosion protection performance under aggressive salt environments.
The mechanism of corrosion inhibition of zinc dithiomercaptothiadiazole (Zn(DMcT)2) has been known and elucidated. The efficacy of (Zn(DMcT)2) as used in primer coatings for corrosion inhibition on steel alloys such as 1010 steel and 4130 high strength steel under neutral pH conditions was investigated by accelerated corrosion testing methodologies. Solution-state studies and surface elemental analyses were conducted to determine the possible mechanism of corrosion inhibition. Solution state experiments showed a correlation between increasing Zn(DMcT)2 amounts and increased polarization resistance, but DMcT on its own did not show this relationship. Under neutral pH conditions, it was determined that Zn(II) species such as Zn(OH)2, Zn(DMcT)2, and possibly ZnO were deposited on the steel surface, providing corrosion protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.