Object Deep brain stimulation (DBS) of the lateral hypothalamic area (LHA) has been suggested as a potential treatment for intractable obesity. The authors present the 2-year safety results as well as early efficacy and metabolic effects in 3 patients undergoing bilateral LHA DBS in the first study of this approach in humans. Methods Three patients meeting strict criteria for intractable obesity, including failed bariatric surgery, under-went bilateral implantation of LHA DBS electrodes as part of an institutional review board– and FDA-approved pilot study. The primary focus of the study was safety; however, the authors also received approval to collect data on early efficacy including weight change and energy metabolism. Results No serious adverse effects, including detrimental psychological consequences, were observed with continuous LHA DBS after a mean follow-up of 35 months (range 30–39 months). Three-dimensional nonlinear transformation of postoperative imaging superimposed onto brain atlas anatomy was used to confirm and study DBS contact proximity to the LHA. No significant weight loss trends were seen when DBS was programmed using standard settings derived from movement disorder DBS surgery. However, promising weight loss trends have been observed when monopolar DBS stimulation has been applied via specific contacts found to increase the resting metabolic rate measured in a respiratory chamber. Conclusions Deep brain stimulation of the LHA may be applied safely to humans with intractable obesity. Early evidence for some weight loss under metabolically optimized settings provides the first “proof of principle” for this novel antiobesity strategy. A larger follow-up study focused on efficacy along with a more rigorous metabolic analysis is planned to further explore the benefits and therapeutic mechanism behind this investigational therapy.
Panic attacks are sudden debilitating attacks of intense distress often accompanied by physical symptoms such as shortness of breath and heart palpitations. Numerous brain regions, hormones, and neurotransmitter systems are putatively involved, but the etiology and neurocircuitry of panic attacks is far from established. One particular brain region of interest is the ventromedial hypothalamus (VMH). In cats and rats, electrical stimulation delivered to the VMH has been shown to evoke an emotional "panic attack-like" escape behavior, and in humans, stimulation targeting nuclei just posterior or anterior to the VMH has reportedly induced panic attacks. The authors report findings obtained in an awake patient undergoing bilateral implantation of deep brain stimulation electrodes into the hypothalamus that strongly implicates the VMH as being critically involved in the genesis of panic attacks. First, as the stimulating electrode progressed deeper into the VMH, the intensity of stimulation required to evoke an attack systematically decreased; second, while stimulation of the VMH in either hemisphere evoked panic, stimulation that appeared to be in the center of the VMH was more potent. Thus, this evidence supports the role of the VMH in the induction of panic attacks purported by animal studies.
Within the population of very severely head injured patients (GCS score 3-5), the simple combination of age and admission GCS score appears to predict accurately non-functional outcome in almost one third of patients. If confirmed at other centers, this may have wide-ranging implications regarding counseling of families, utilization of resources, and the design of head injury studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.