BACKGROUND: This case series summarizes our observations of hemolytic reactions after the administration of large amounts of intravenous immune (gamma) globulin (IVIG). STUDY DESIGN AND METHODS: Cases of hemolysis were identified by a decrease in hemoglobin not otherwise explained following IVIG administration. RESULTS: Sixteen cases were identified over a 21/2-year period at the Ottawa Hospital of approximately 1000 patients receiving IVIG (1.6%). Characteristics of these patients include a large dose of IVIG, female sex, non-O blood group, and underlying inflammatory state. CONCLUSIONS: Significant hemolysis may occur after the administration of large doses of IVIG. A two-step mechanism of hemolysis is proposed, sensitization by ABO isohemagglutinins followed by phagocytosis by activated macrophages. A simple protocol to facilitate the early detection of such cases is presented.
Many calcium-mediated effects in mammalian cells may be activated by calcium-calmodulin stimulated enzymes. These effects are inhibited by various antidepressant drugs which bind to and inactivate calmodulin. In the current study, calmodulin was identified by affinity chromatography and gel electrophoresis in the cytoplasm of dispersed rat pancreatic acinar cells. Its role in enzyme secretion was assessed by evaluating the effects of various antidepressants drugs on the enzyme secretory process. Chlorpromazine, trifluoperazine, thioridazine, chlorprothixene and amitriptyline inhibited amylase secretion stimulated by carbachol, A-23187, and cholecystokinin-pancreozymin but not that elicited by dibutyryl cyclic AMP secretin or vasoactive intestinal peptide (VIP). Haloperidol, sulpiride, phenobarbital, and ethanol were without effect on secretagogue-stimulated enzyme release. Only those agents which blocked secretion also inhibited 45Ca release stimulated by carbachol from isotope preloaded cells. The data suggest that calmodulin may have a functional role in pancreatic enzyme secretion.
Pancreatic acinar cells do not contain depolarization-sensitive calcium channels. Nonetheless, in the current study, the calcium channel activator, BAY-K-8644, was found to stimulate a time- and concentration-dependent increase in the spontaneous release of amylase. Secretion was dependent on the presence of extracellular calcium in the incubation medium. Racemic BAY-K-8644 and (or) its S(-)optical isomer did not enhance the secretory response to either carbachol or cholecystokinin octapeptide; however, when co-applied with either phorbol ester, vasoactive intestinal peptide, or forskolin, they potentiated amylase secretion. Nifedipine and the R(+)isomer of BAY-K-8644, which are both calcium channel antagonists, did not alter basal or forskolin-stimulated amylase secretion, and [3H]nitrendipine did not bind to acinar cell membranes. Neither atropine nor dibutyryl cGMP, inhibitors of cholinergic and cholecystokininergic receptors, respectively, affected BAY-K-8644-induced amylase secretion. While BAY-K-8644 stimulated concentration-dependent cGMP synthesis in acinar cells, it had no effect on basal or forskolin-stimulated cAMP formation. The data suggest that BAY-K-8644 may bind to acinar cell sites that are not functional calcium channel proteins but are coupled nevertheless to the secretory response, and that calcium channel antagonists do not bind to these sites. The mechanism of the secretagogue action of BAY-K-8644 remains to be elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.