N-RAP gene expression and N-RAP localization were studied during mouse heart development using semiquantitative reverse transcriptase-polymerase chain reaction and immunofluorescence. N-RAP mRNA was detected at embryonic day (E) 10.5, significantly increased from E10.5 to E16.5, and remained essentially constant from E16.5 until 21 days after birth. In E9.5-10.5 heart tissue, N-RAP protein was primarily associated with developing premyofibril structures containing ␣-actinin,
N-RAP alternative splicing and protein localization were studied in developing skeletal muscle tissue from pre-and postnatal mice and in fusing primary myotubes in culture. Messages encoding N-RAPs and N-RAP-c, the predominant isoforms of N-RAP detected in adult skeletal muscle and heart, respectively, were present in a 5:1 ratio in skeletal muscle isolated from E16.5 embryos. N-RAP-s mRNA levels increased three-fold over the first three weeks of postnatal development, while N-RAPc mRNA levels remained low. N-RAP alternative splicing during myotube differentiation in culture was similar to the pattern observed in embryonic and neonatal muscle, with N-RAP-s expression increasing and N-RAP-c mRNA levels remaining low. In both developing skeletal muscle and cultured myotubes, N-RAP protein was primarily associated with developing myofibrillar structures containing α-actinin, but was not present in mature myofibrils. The results establish that N-RAP-s is the predominant spliced form of N-RAP present throughout skeletal muscle development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.