SUMMARYSmokers are more susceptible than non-smokers to persistent infection by Porphyromonas gingivalis, a causative agent of periodontitis. Patients who smoke exhibit increased susceptibility to periodontitis and are more likely to display severe disease and be refractory to treatment. Paradoxically, smokers demonstrate reduced clinical inflammation. We show that P. gingivalis cells exposed to cigarette smoke extract (CSE) induce a lower pro-inflammatory response (TNF-α, IL-6, IL12 p40) from monocytes and PBMCs than do unexposed bacteria. This effect is reversed when CSE-exposed bacteria are subcultured in fresh medium without CSE. Using microarrays representative of the P. gingivalis genome, CSE-exposure resulted in differential regulation of 6.8% of P. gingivalis genes, including detoxification and oxidative stress-related genes; DNA repair genes; and multiple genes related to P. gingivalis virulence, including genes in the major fimbrial and capsular operons. Exposure to CSE also altered the expression of outer membrane proteins, most notably by inducing the virulence factors RagA and RagB, and a putative lipoprotein co-transcribed with the minor fimbrial antigen. Therefore, CSE represents an environmental stress to which P. gingivalis adapts by altering gene expression and outer membrane proteins. These changes may explain, in part, the altered virulence and host-pathogen interactions that have been documented in vivo in smokers with periodontal disease.
BackgroundTobacco smokers are more susceptible to periodontitis than non-smokers but exhibit reduced signs of clinical inflammation. The underlying mechanisms are unknown. We have previously shown that cigarette smoke extract (CSE) represents an environmental stress to which P. gingivalis adapts by altering the expression of several virulence factors – including major and minor fimbrial antigens (FimA and Mfa1, respectively) and capsule – concomitant with a reduced pro-inflammatory potential of intact P. gingivalis.Methodology/Principal FindingsWe hypothesized that CSE-regulation of capsule and fimbrial genes is reflected at the ultrastructural and functional levels, alters the nature of host-pathogen interactions, and contributes to the reduced pro- inflammatory potential of smoke exposed P. gingivalis. CSE induced ultrastructural alterations were determined by electron microscopy, confirmed by Western blot and physiological consequences studied in open-flow biofilms. Inflammatory profiling of specific CSE-dysregulated proteins, rFimA and rMfa1, was determined by quantifying cytokine induction in primary human innate and OBA-9 cells. CSE up-regulates P. gingivalis FimA at the protein level, suppresses the production of capsular polysaccharides at the ultrastructural level, and creates conditions that promote biofilm formation. We further show that while FimA is recognized by TLR2/6, it has only minimal inflammatory activity in several cell types. Furthermore, FimA stimulation chronically abrogates the pro-inflammatory response to subsequent TLR2 stimulation by other TLR-2-specific agonists (Pam3CSK4, FSL, Mfa1) in an IκBα- and IRAK-1-dependent manner.Conclusions/SignificanceThese studies provide some of the first information to explain, mechanistically, how tobacco smoke changes the P. gingivalis phenotype in a manner likely to promote P. gingivalis colonization and infection while simultaneously reducing the host response to this major mucosal pathogen.
Nicotine [(S)-3-(1-methyl-2-pyrrolidinyl)pyridine] is a major component of tobacco and a highly efficient acetylcholine receptor (nAChR) agonist that triggers the cholinergic anti-inflammatory pathway. We demonstrate that pre-treatment of monocytes with the stable nicotine catabolite, cotinine [(S)-1-methyl-5-(3-pyridinyl)-2-pyrrolidinone], dramatically alters the nature of the inflammatory response to Gram negative bacteria by abrogating the production of cytokines that are under the transcriptional control of the NF-kappaB system (TNF-alpha, IL-1beta, IL-6, IL-12/IL-23 p40) and shifting the response towards an IL-10-dominated anti-inflammatory profile. This anti-inflammatory phenomenon is initiated specifically by engagement of the monocytic alpha7 nAChR; and is PI3K/GSK-3beta-dependent; but NF-kappaB-independent. These mechanistic insights suggest an ability to exploit convergent, endogenous anti-inflammatory pathway(s) to either up-regulate or down-regulate the production of specific cytokine groups (pro- or anti-inflammatory cytokines) depending on the clinical necessity.
Smoking is responsible for the majority of periodontitis cases in the US and smokers are more susceptible than non-smokers to infection by the periodontal pathogen Porphyromonas gingivalis. P. gingivalis colonization of the oral cavity is dependent upon its interaction with other plaque bacteria, including Streptococcus gordonii. Microarray analysis suggested that exposure of P. gingivalis to cigarette smoke extract (CSE) increased the expression of the major fimbrial antigen (FimA), but not the minor fimbrial antigen (Mfa1). Therefore, we hypothesized that CSE promotes P. gingivalis-S. gordonii biofilm formation in a FimA-dependent manner. FimA total protein and cell surface expression were increased upon exposure to CSE whereas Mfa1 was unaffected. CSE exposure did not induce P. gingivalis auto-aggregation but did promote dual species biofilm formation, monitored by microcolony numbers and depth (both, p<0.05). Interestingly, P. gingivalis biofilms grown in the presence of CSE exhibited a lower pro-inflammatory capacity (TNF-α, IL-6) than control biofilms (both, p<0.01). CSE-exposed P. gingivalis bound more strongly to immobilized rGAPDH, the cognate FimA ligand on S. gordonii, than control biofilms (p<0.001) and did so in a dose-dependent manner. Nevertheless, a peptide representing the Mfa1 binding site on S. gordonii, SspB, completely inhibited dual species biofilm formation. Thus, CSE likely augments P. gingivalis biofilm formation by increasing FimA avidity which, in turn, supports initial interspecies interactions and promotes subsequent high affinity Mfa1-SspB interactions driving biofilm growth. CSE induction of P. gingivalis biofilms of limited pro-inflammatory potential may explain the increased persistence of this pathogen in smokers. These findings may also be relevant to other biofilm-induced infectious diseases and conditions.
Over half of adults experience gingivitis, a mild yet treatable form of periodontal disease caused by the overgrowth of oral microbes. Left untreated, gingivitis can progress to a more severe and irreversible disease, most commonly chronic periodontitis. While periodontal diseases are associated with a shift in the oral microbiota composition, it remains unclear how this shift impacts microbiota function early in disease progression. Here, we analyzed the transition from health to gingivitis through both 16S v4-v5 rRNA amplicon and metatranscriptome sequencing of subgingival plaque samples from individuals undergoing an experimental gingivitis treatment. Beta-diversity analysis of 16S rRNA reveals that samples cluster based on disease severity and patient but not by oral hygiene status. Significant shifts in the abundance of several genera occurred during disease transition, suggesting a dysbiosis due to development of gingivitis. Comparing taxonomic abundance with transcriptomic activity revealed concordance of bacterial diversity composition between the two quantification assays in samples originating from both healthy and diseased teeth. Metatranscriptome sequencing analysis indicates that during the early stages of transition to gingivitis, a number of virulence-related transcripts were significantly differentially expressed in individual and across pooled patient samples. Upregulated genes include those involved in proteolytic and nucleolytic processes, while expression levels of those involved in surface structure assembly and other general virulence functions leading to colonization or adaptation within the host are more dynamic. These findings help characterize the transition from health to periodontal disease and identify genes associated with early disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.