Inclusion body disease (IBD) is a worldwide disease in captive boa constrictors (boa constrictor) and occasionally in other snakes of the families Boidae and Pythonidae. The exact causative agent(s) and pathogenesis are not yet fully understood. Currently, diagnosis of IBD is based on the light microscopic identification of eosinophilic intracytoplasmic inclusion bodies in hematoxylin and eosin stained tissues or blood smears. An antigenically unique 68 KDa protein was identified within the IBD inclusion bodies, called IBD protein. A validated immuno-based ante-mortem diagnostic test is needed for screening snakes that are at risk of having IBD. In this study, despite difficulties in solubilizing semi-purified inclusion bodies, utilizing hybridoma technology a mouse anti-IBD protein monoclonal antibody (MAB) was produced. The antigenic specificity of the antibody was confirmed and validated by western blots, enzyme-linked immunosorbent assay, immuno-transmission electron microscopy, and immunohistochemical staining. Paraffin embedded tissues of IBD positive and negative boa constrictors (n=94) collected from 1990 to 2011 were tested with immunohistochemical staining. In boa constrictors, the anti-IBDP MAB had a sensitivity of 83% and specificity of 100% in detecting IBD. The antibody also cross-reacted with IBD inclusion bodies in carpet pythons (Morelia spilota) and a ball python (python regius). This validated antibody can serve as a tool for the development of ante-mortem immunodiagnostic tests for IBD.
Megachiropteran bats are biologically important both as endangered species and reservoirs for emerging human pathogens. Reliable detection of antibodies to specific pathogens in bats is thus epidemiologically critical. Eight variable flying foxes (Pteropus hypomelanus) were immunized with 2,4-dinitrophenylated bovine serum albumin (DNP-BSA). Each bat received monthly inoculations for 2 months. Affinity-purified IgG was used for production of polyclonal and monoclonal anti-variable flying fox IgG antibodies. ELISA and western blot analysis were used to monitor immune responses and for assessment of polyclonal and monoclonal antibody species cross-reactivity. Protein G, polyclonal antibodies, and monoclonal antibodies detected specific anti-DNP antibody responses in immunized variable flying foxes, with protein G being the most sensitive, followed by monoclonal antibodies and then polyclonal antibodies. While the polyclonal antibody was found to cross-react well against IgG of all bat species tested, some non-specific background was observed. The monoclonal antibody was found to cross-react well against IgG of six other species in the genus Pteropus and to cross-react less strongly against IgG from Eidolon helvum or Phyllostomus hastatus. Protein G distinguished best between vaccinated and unvaccinated bats, and these results validate the use of protein G for detection of bat IgG. Monoclonal antibodies developed in this study recognized immunoglobulins from other members of the genus Pteropus well, and may be useful in applications where specific detection of Pteropus IgG is needed.
Abstract. Antibodies directed against species-specific immunoglobulin G (IgG) have a broad range of applications in serologic and immunologic research and in the development of clinical assays. Validated antiIgG antibodies for marine mammal species are in short supply. The objective of this study was to produce and validate antibodies with specificity for IgG of the common bottlenose dolphin (Tursiops truncatus). Bottlenose dolphin IgG was purified using protein G. Two mouse monoclonal antibodies and a rabbit polyclonal antibody were developed from mice and rabbits immunized with bottlenose dolphin IgG. The specificity of the monoclonal antibodies and the polyclonal antibody for bottlenose dolphin IgG was first verified by Western blot analysis and enzyme-linked immunosorbent assay (ELISA). For further validation, both monoclonal antibodies and the polyclonal antibody were incorporated in an indirect ELISA for the detection of the immune response of bottlenose dolphins to a vaccine antigen. Three bottlenose dolphins were immunized with a commercial Erysipelothrix rhusiopathiae vaccine, and serial blood samples were collected from all dolphins for measurement of levels of circulating antibodies. Seroconversion was observed in all 3 dolphins by use of both monoclonal antibodies and the polyclonal antibody. Circulating antibodies were detectable as early as 6 days after immunization in 1 dolphin. Peak antibody levels were detected 14 days after the immunization. The ability to detect seroconversion in all 3 immunized bottlenose dolphins firmly establishes the specificity of the monoclonal antibodies and the polyclonal antibody for IgG of the common bottlenose dolphin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.