The conventional safety approach that includes dermal absorption of pharmaceutical or consumer products uses models that are based on intact skin. However, when products are intended for application to skin with a less effective barrier, such as in new-born infants, or in cases where the skin is mildly damaged or diseased, there are instances where absorption through compromised skin is also important. A tape stripping procedure was investigated using dermatomed pig skin to assess if an in vitro model could replicate the typical changes in barrier function observed in humans with compromised skin. The relationship between Trans-Epidermal Water Loss (TEWL), Electrical Resistance (ER) and Tritiated Water Flux(TWF), markers of skin barrier function in OECD 428 studies was investigated. There was a step-wise reduction in ER from normal (control) skin following 5, 10, 15 or 20 tape strips. This was mirrored by increases in both TWF and TEWL. An in vitro experimental protocol using 5 tape strips, ER and dermatomed pig skin provided a rapid, robust and reproducible approach equivalent to the 3–4-fold increases in TEWL observed clinically in compromised skin.
The OECD test guideline 428 for the assessment of dermal absorption in vitro has been in force for more than a decade. Various sectors of industry utilise the method for the registration of chemical products. These include the Agrochemical and Cosmetic sectors where the OECD test guideline and industry-specific guidance forms a key part of the human risk assessment process for new and existing products. This investigation has compared the dermal absorption characteristics of one of the OECD 428 reference chemicals, testosterone, in human and pig dermatomed skin. We used identical dosing and skin decontamination conditions for testosterone in Franz static diffusion cells. This included a full mass balance recovery of the dose applied and distribution of the compound in the different layers of the skin. Our investigation has shown that intact human skin provides a more effective barrier to the dermal absorption of testosterone compared with pig skin, when studied according to modern day in vitro dermal absorption guidance.
A new in vitro model based on the electrical resistance properties of the skin barrier has been established in this laboratory. The model utilises a tape stripping procedure in dermatomed pig skin that removes a specific proportion of the stratum corneum, mimicking impaired barrier function observed in humans with damaged skin. The skin penetration and distribution of chemicals with differing physicochemical properties, namely; Benzoic acid, 3-Aminophenol, Caffeine and Sucrose has been assessed in this model. Although, skin penetration over 24h differed for each chemical, compromising the skin did not alter the shape of the time course profile, although absorption into receptor fluid was higher for each chemical. Systemic exposure (receptor fluid, epidermis and dermis), was marginally higher in compromised skin following exposure to the fast penetrant, Benzoic acid, and the slow penetrant Sucrose. The systemically available dose of 3-Aminophenol increased to a greater extent and the absorption of Caffeine was more than double in compromised skin, suggesting that Molecular Weight and Log P, are not the only determinants for assessing systemic exposure under these conditions. Although further investigations are required, this in vitro model may be useful for prediction of dermal route exposure under conditions where skin barrier is impaired.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.