Paleoanthropological evidence indicates that both the Levantine corridor and the Horn of Africa served, repeatedly, as migratory corridors between Africa and Eurasia. We have begun investigating the roles of these passageways in bidirectional migrations of anatomically modern humans, by analyzing 45 informative biallelic markers as well as 10 microsatellite loci on the nonrecombining region of the Y chromosome (NRY) in 121 and 147 extant males from Oman and northern Egypt, respectively. The present study uncovers three important points concerning these demic movements: (1) The E3b1-M78 and E3b3-M123 lineages, as well as the R1*-M173 lineages, mark gene flow between Egypt and the Levant during the Upper Paleolithic and Mesolithic. (2) In contrast, the Horn of Africa appears to be of minor importance in the human migratory movements between Africa and Eurasia represented by these chromosomes, an observation based on the frequency distributions of E3b*-M35 (no known downstream mutations) and M173. (3) The areal diffusion patterns of G-M201, J-12f2, the derivative M173 haplogroups, and M2 suggest more recent genetic associations between the Middle East and Africa, involving the Levantine corridor and/or Arab slave routes. Affinities to African groups were also evaluated by determining the NRY haplogroup composition in 434 samples from seven sub-Saharan African populations. Oman and Egypt's NRY frequency distributions appear to be much more similar to those of the Middle East than to any sub-Saharan African population, suggesting a much larger Eurasian genetic component. Finally, the overall phylogeographic profile reveals several clinal patterns and genetic partitions that may indicate source, direction, and relative timing of different waves of dispersals and expansions involving these nine populations.
Eight U2 snRNA variants were isolated from several Bombyx mori U2-specific RT-PCR libraries. U2 sequences and secondary structures were generated and examined in terms of potential RNA and protein interactions. Analysis indicated that nucleotide changes occurred in both stem/loop and single-stranded areas. Changes in the double stranded areas were either compensatory, single substitutions (e.g. C <--> U) or prevented the double-stranded formation of one or two base pairs. The polymorphisms were clustered in moderately conserved regions. Some of the changes observed generated stronger base pairing. Inter-species conserved protein or RNA-binding sites were relatively unaffected. No polymorphic sites were found in known functional sequences. Bombyx mori and Drosophila melanogaster U2 sequences are 95% and 70% similar at the 5'- and the 3'-ends of the molecule, respectively. Phylogenetic analysis of the U2 sequences demonstrates remarkable conservation across species.
Laboratory in vitro evolution (LIVE) might deliver DNA aptamers that bind proteins expressed on the surface of cells. Here, we use cell engineering to place on the surface of a liver cell line glypican 3 (GPC3), a possible marker for liver cancer diagnostics and theranostics. Libraries were then built from a six-letter genetic alphabet containing standard nucleobase and two added nucleobases (2-amino-8H-imidazo[1,2-a] [1,3,5] triazin-4-one and 6-amino-5-nitropyridin-2-one, trivially Z and P), Watson-Crick complements from an artificially expanded genetic information system (AEGIS). With counterselection against un-engineered cells, eight AEGIS-containing aptamers were recovered. Five bound selectively to GPC3 overexpressing cells. This selection-counterselection scheme had acceptable statistics, notwithstanding the possibility that cells engineered to overexpress GPC3 might also express different off-target proteins. This is the first example of such a combination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.