Ebola virus (EBOV) and Marburg virus (MARV) cause rapidly progressive hemorrhagic fever with high mortality and may possess specialized mechanisms to evade immune destruction. We postulated that immune evasion could be due to the ability of EBOV and MARV to interfere with dendritic cells (DCs), which link innate and adaptive immune responses. We demonstrate that EBOV and MARV infected and replicated in primary human DCs without inducing cytokine secretion. Infected DC cultures supported exponential viral growth without releasing interferon (IFN)-alpha and were impaired in IFN-alpha production if treated with double-stranded RNA. Moreover, EBOV and MARV impaired the ability of DCs to support T cell proliferation, and infected, immature DCs underwent an anomalous maturation. These findings may explain the profound virulence of EBOV and MARV--DCs are disabled, and an effective early host response is delayed by the necessary reliance on less-efficient secondary mechanisms.
Marburg virus (MBGV), for which no vaccines or treatments currently exist, causes an acute hemorrhagic fever with a high mortality rate in humans. We previously showed that immunization with either killed MBGV or a glycoprotein (GP) subunit prevented lethal infection in guinea pigs. In the studies reported here, an RNA replicon, based upon Venezuelan equine encephalitis (VEE) virus, was used as a vaccine vector; the VEE structural genes were replaced by genes for MBGV GP, nucleoprotein (NP), VP40, VP35, VP30, or VP24. Guinea pigs were vaccinated with recombinant VEE replicons (packaged into VEE-like particles), inoculated with MBGV, and evaluated for viremia and survival. Results indicated that either GP or NP were protective antigens while VP35 afforded incomplete protection. As a more definitive test of vaccine efficacy, nonhuman primates (cynomolgus macaques) were inoculated with VEE replicons expressing MBGV GP and/or NP. Three monkeys received packaged control replicons (influenza HA); these died 9 or 10 days after challenge, with typical MBGV disease. MBGV NP afforded incomplete protection, sufficient to prevent death but not disease in two of three macaques. Three monkeys vaccinated with replicons which expressed MBGV GP, and three others vaccinated with both replicons that expressed GP or NP, remained aviremic and were completely protected from disease.
Ebola virus (EBOV)-like particles (eVLP), composed of the EBOV glycoprotein and matrix viral protein (VP)40 with a lipid membrane, are a highly efficacious method of immunization against EBOV infection. The exact requirements for immunity against EBOV infection are poorly defined at this time. The goal of this work was to determine the requirements for EBOV immunity following eVLP vaccination. Vaccination of BALB/c or C57BL/6 mice with eVLPs in conjunction with QS-21 adjuvant resulted in mixed IgG subclass responses, a Th1-like memory cytokine response, and protection from lethal EBOV challenge. Further, this vaccination schedule led to the generation of both CD4+ and CD8+ IFN-γ+ T cells recognizing specific peptides within glycoprotein and VP40. The transfer of both serum and splenocytes, but not serum or splenocytes alone, from eVLP-vaccinated mice conferred protection against lethal EBOV infection in these studies. B cells were required for eVLP-mediated immunity to EBOV because B cell-deficient mice vaccinated with eVLPs were not protected from lethal EBOV challenge. We also found that CD8+, but not CD4+, T cells are absolutely required for eVLP-mediated protection against EBOV infection. Further, eVLP-induced protective mechanisms were perforin-independent, but IFN-γ-dependent. Taken together, both EBOV-specific humoral and cytotoxic CD8+ T cell responses are critical to mediate protection against filoviruses following eVLP vaccination.
There is no effective vaccine for Marburg virus (MBGV) or any other filovirus, nor enough pertinent information to expedite rational vaccine development. To ascertain some of the minimal requirements for a MBGV vaccine, we determined whether whole inactivated MBGV, or a baculovirus-expressed virion subunit, could be used to immunize guinea pigs against a lethal infection. Baculovirus recombinants were made to express the MBGV glycoprotein (GP) either as a full-length, cell-associated molecule or a slightly truncated (5.4%) product secreted into medium; the latter, for its far greater ease in manipulation, was tested for its vaccine potential. Like MBGV GP, both the full-length and truncated GP expressed by baculovirus recombinants were abundantly glycosylated with both N- and O-linked glycans; differences in glycosylation were detectable, but these could not be shown to affect antigenicity with respect to available antibodies. The recombinant truncated glycoprotein elicited protection against lethal challenge with the MBGV isolate from which it was constructed and less effectively against an antigenically disparate MBGV isolate. Killed (irradiated) MBGV antigen was protective, in a reciprocal fashion, against both MBGV types. In a preliminary assessment of possible protective mechanisms, serum antibodies from immune animals were shown to be sufficient for protecting naive guinea pigs from lethal MBGV infections
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.