Genes of the Polycomb group (PcG) of Drosophila encode proteins necessary for the maintenance of transcriptional repression of homeotic genes. PcG proteins are thought to act by binding as multiprotein complexes to DNA through Polycomb group response elements (PREs); however, specific DNA binding has not been demonstrated for any of the PcG proteins. We have identified a sequence-specific DNA binding protein that interacts with a PRE from the Drosophila engrailed gene. This protein (PHO) is a homolog of the ubiquitous mammalian transcription factor Yin Yang-1 and is encoded by pleiohomeotic, a known member of the PcG. We propose that PHO acts to anchor PcG protein complexes to DNA.
Enhancers are often located many tens of kilobases away from the promoter they regulate, sometimes residing closer to the promoter of a neighboring gene. How do they know which gene to activate? We have used homing P[en]constructs to study the enhancer-promoter communication at the engrailed locus. Here we show that engrailed enhancers can act over large distances, even skipping over other transcription units,choosing the engrailed promoter over those of neighboring genes. This specificity is achieved in at least three ways. First, early acting engrailed stripe enhancers exhibit promoter specificity. Second, a proximal promoter-tethering element is required for the action of the imaginal disc enhancer(s). Our data suggest that there are two partially redundant promoter-tethering elements. Third, the long-distance action of engrailed enhancers requires a combination of the engrailedpromoter and sequences within or closely linked to the promoter proximal Polycomb-group response elements. These data show that multiple mechanisms ensure proper enhancer-promoter communication at the Drosophila engrailed locus.
P-element vectors are commonly used to make transgenic Drosophila and generally insert in the genome in a nonselective manner. However, when specific fragments of regulatory DNA from a few Drosophila genes are incorporated into P-transposons, they cause the vectors to be inserted near the gene from which the DNA fragment was derived. This is called P-element homing. We mapped the minimal DNA fragment that could mediate homing to the engrailed/invected region of the genome. A 1.6 kb fragment of engrailed regulatory DNA that contains two Polycomb-group response elements (PREs) was sufficient for homing. We made flies that contain a 1.5kb deletion of engrailed DNA (enΔ1.5) in situ, including the PREs and the majority of the fragment that mediates homing. Remarkably, homing still occurs onto the enΔ1. 5 chromosome. In addition to homing to en, P[en] inserts near Polycomb group target genes at an increased frequency compared to P[EPgy2], a vector used to generate 18,214 insertions for the Drosophila gene disruption project. We suggest that homing is mediated by interactions between multiple proteins bound to the homing fragment and proteins bound to multiple areas of the engrailed/invected chromatin domain. Chromatin structure may also play a role in homing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.