The erbB/HER family of transmembrane receptor tyrosine kinases (RTKs) mediate cellular responses to epidermal growth factor (EGF) and related ligands. We have imaged the early stages of RTK-dependent signaling in living cells using: (i) stable expression of erbB1/2/3 fused with visible fluorescent proteins (VFPs), (ii) fluorescent quantum dots (QDs) bearing epidermal growth factor (EGF-QD) and (iii) continuous confocal laser scanning microscopy and flow cytometry. Here we demonstrate that EGF-QDs are highly specific and potent in the binding and activation of the EGF receptor (erbB1), being rapidly internalized into endosomes that exhibit active trafficking and extensive fusion. EGF-QDs bound to erbB1 expressed on filopodia revealed a previously unreported mechanism of retrograde transport to the cell body. When erbB2-monomeric yellow fluorescent protein (mYFP) or erbB3-monomeric Citrine (mCitrine) were coexpressed with erbB1, the rates and extent of endocytosis of EGF-QD and the RTK-VFP demonstrated that erbB2 but not erbB3 heterodimerizes with erbB1 after EGF stimulation, thereby modulating EGF-induced signaling. QD-ligands will find widespread use in basic research and biotechnological developments.
The extent to which ligand occupancy and dimerization contribute to erbB1 signaling is controversial. To examine this, we utilized two-color Quantum Dot tracking for visualization of erbB1 homodimerization and quantification of the dimer off rate (koff) on living cells. Kinetic parameters were extracted using a 3-state Hidden Markov Model to identify transition rates between free, co-confined, and dimerized states. We report that dimers composed of 2 ligand-bound receptors are long-lived and their koff is independent of kinase activity. By comparison, unliganded dimers have >4-fold faster koff. Transient co-confinement of receptors promotes repeated encounters and enhances dimer formation. Mobility decreases >6-fold when ligand-bound receptors dimerize. Blockade of erbB1 kinase activity or disruption of actin networks results in faster diffusion of receptor dimers. These results implicate both signal propagation and the cortical cytoskeleton in reduced mobility of signaling-competent erbB1 dimers.
The actin cytoskeleton has been implicated in restricting diffusion of plasma membrane components. Here, simultaneous observations of quantum dot-labelled FcεRI motion and GFPtagged actin dynamics provide direct evidence that actin filament bundles define micron-sized domains that confine mobile receptors. Dynamic reorganisation of actin structures occurs over seconds, making the location and dimensions of actin-defined domains time dependent. Multiple FcεRI often maintain extended close proximity without detectable correlated motion, suggesting that they are co-confined within membrane domains. FcεRI signalling is activated by cross-linking with multivalent antigen. We show that receptors become immobilised within seconds of crosslinking. Disruption of the actin cytoskeleton results in delayed immobilisation kinetics and increased diffusion of cross-linked clusters. These results implicate actin in membrane partitioning that not only restricts diffusion of membrane proteins, but also dynamically influences their longrange mobility, sequestration, and response to ligand binding.Signal transduction from the external environment to the cell interior is typically mediated by ligand-bound transmembrane receptors embedded in a lipid bilayer. In many systems, receptor activation is associated with changes in receptor dynamics and membrane topography1 -3 . Among these are the multi-chain immune recognition receptor family members that include the B-cell receptor (BCR) of B-cells, the T-cell receptor (TCR) of Tcells, and the high affinity IgE receptor (FcεRI) of mast cells and basophils, which are crucial to the execution of key events in the immune response. Cross-linking of these transmembrane receptors induces receptor oligomerisation, protein and lipid kinase activation and Ca 2+ mobilisation, leading in turn to cytoskeletal reorganisation, receptor trafficking and cell-specific responses including altered gene expression [4][5][6] . These signalling events have been well studied by biochemical techniques, but the precise mechanism by which oligomerisation initiates these events has remained elusive. Full understanding of these complex signalling cascades will require a more complete description of receptor movements in the membrane, including restrictions that might limit receptor diffusion and accessibility.Correspondence should be addressed to D.S.L. (dlidke@salud.unm.edu). 4 These authors contributed equally to this work. NIH Public Access Author ManuscriptNat Cell Biol. Author manuscript; available in PMC 2011 January 18. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author ManuscriptA rich literature on single particle tracking (SPT) methods to follow the lateral diffusion of transmembrane and membrane-associated proteins7 -10 has revealed nanometer-scale "confinement zones" that restrict lateral diffusion and supports the general notion that plasma membrane organisation is more structured than originally postulated by the fluid mosaic model11. A membrane-skeleton fence (picket fence) model ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.