Background
Preventing falls in hospital is a perennial patient safety issue. The University Hospital Coventry and Warwickshire initiated a programme to train ward staff in accordance with guidelines. The National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care West Midlands was asked to expedite an independent evaluation of the initiative. We set out to describe the intervention to implement the guidelines and to evaluate it by means of a step-wedge cluster study using routinely collected data.
Methods
The evaluation was set up as a partially randomised, step-wedge cluster study, but roll-out across wards was more rapid than planned. The study was therefore analysed as a time-series. Primary outcome was rate of falls per 1000 Occupied Bed Days (OBDs) collected monthly using routine data. Data was analysed using a mixed-effects Poisson regression model, with a fixed effect for intervention, time and post-intervention time. We allowed for random variations across clusters in initial fall rate, pre-intervention slope and post-intervention slope.
Results
There was an average of 6.62 falls per 1000 OBDs in the control phase, decreasing to an average of 5.89 falls per 1000 OBDs in the period after implementation to the study end. Regression models showed no significant step change in fall rates (IRR: 1.02, 95% CI: 0.92–1.14). However, there was a gradual decrease, of approximately 3%, after the intervention was introduced (IRR: 0.97 per month, 95% CI: 0.95–0.99).
Conclusion
The intervention was associated with a small but statistically significantly improvement in falls rates. Expedited roll-out of an intervention may vitiate a step-wedge cluster design, but the intervention can still be studied using a time-series analysis. Assuming that there is some value in time series analyses, this is better than no evaluation at all. However, care is needed in making causal inferences given the non-experimental nature of the design.
The goal of this study was to evaluate the effect of effluents from conventional activated sludge (CAS) and biological nutrient removal (BNR) processes on algal bloom in receiving waters. We made multiple effluent sampling from one CAS and two BNR facilities, characterized their effluents, and conducted bioassay using river and ocean water. The bioassay results showed that CAS effluents brought similar productivity in both river and ocean water, while BNR effluents were more reactive and productive in ocean water. Unexpectedly, nitrogen-based biomass yields in ocean water were up to six times larger for BNR effluents than CAS effluent. These results indicated that nitrogen in BNR effluents, although its total concentration is lower than that of CAS effluent, is more reactive and productive in ocean water. The ocean water bioassay further revealed that effluents of BNR and CAS led to considerably different phytoplankton community, indicating that different characteristics of effluents could also result in different types of algal bloom in receiving waters. The present study suggests that effects of upgrading CAS to BNR processes on algal bloom in receiving waters, especially in estuary and ocean, should be further examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.