Macroautophagy is a key stress-response pathway that can suppress or promote tumorigenesis depending on the cellular context. Notably, Kirsten rat sarcoma (KRAS)-driven tumors have been reported to rely on macroautophagy for growth and survival, suggesting a potential therapeutic approach of using autophagy inhibitors based on genetic stratification. In this study, we evaluated whether KRAS mutation status can predict the efficacy to macroautophagy inhibition. By profiling 47 cell lines with pharmacological and genetic lossof-function tools, we were unable to confirm that KRAS-driven tumor lines require macroautophagy for growth. Deletion of autophagyrelated 7 (ATG7) by genome editing completely blocked macroautophagy in several tumor lines with oncogenic mutations in KRAS but did not inhibit cell proliferation in vitro or tumorigenesis in vivo. Furthermore, ATG7 knockout did not sensitize cells to irradiation or to several anticancer agents tested. Interestingly, ATG7-deficient and -proficient cells were equally sensitive to the antiproliferative effect of chloroquine, a lysosomotropic agent often used as a pharmacological tool to evaluate the response to macroautophagy inhibition. Moreover, both cell types manifested synergistic growth inhibition when treated with chloroquine plus the tyrosine kinase inhibitors erlotinib or sunitinib, suggesting that the antiproliferative effects of chloroquine are independent of its suppressive actions on autophagy.M acroautophagy is a catabolic pathway that shuttles cytoplasmic components via double-membrane vesicles (autophagosomes) into lysosomes for degradation and recycling. Autophagosome formation and elongation are facilitated by ubiquitin-like molecules such as MAP1LC3A/B (herein referred to as "LC3") and its homologs which are directly conjugated to phosphatidylethanolamine (PE), a reaction which requires the ubiquitin E1-like activity of autophagy-related 7 (ATG7), the E2-like activity of ATG3, and the E3-like activity of the ATG5-ATG12-ATG16L1 complex (1). Autophagy cargo receptors such as p62/ SQSTM1 bind both LC3 and ubiquitinated cargo, enabling cargo recruitment into autophagosomes and delivery to lysosomes (2, 3).Basal levels of macroautophagy control cellular homeostasis by clearing misfolded proteins or damaged organelles (4, 5). Upon starvation, macroautophagy can be induced above basal levels to supply the cell with nutrients (6, 7). This prosurvival function of macroautophagy is also used by cancer cells under conditions of metabolic stress (8). However, the role of autophagy in cancer is complex and context dependent, because the pathway has been reported to have tumor-suppressing as well as tumor-promoting properties (9-11). Liver-specific deletion of ATG7 results in increased formation of liver tumors through the activation of the Nrf2 pathway (12). Furthermore, the essential autophagy component beclin-1 inhibits tumorigenesis of breast carcinoma cells, and monoallelic deletion of beclin-1 is associated with an enhanced risk of breast cancer (13-15). I...
Background Engineered therapeutic cells have attracted a great deal of interest due to their potential applications in treating a wide range of diseases, including cancer and autoimmunity. Chimeric antigen receptor (CAR) T-cells are designed to detect and kill tumor cells that present a specific, predefined antigen. The rapid expansion of targeted antigen beyond CD19, has highlighted new challenges, such as autoactivation and T-cell fratricide, that could impact the capacity to manufacture engineered CAR T-cells. Therefore, the development of strategies to control CAR expression at the surface of T-cells and their functions is under intense investigations. Results Here, we report the development and evaluation of an off-switch directly embedded within a CAR construct (SWIFF-CAR). The incorporation of a self-cleaving degradation moiety controlled by a protease/protease inhibitor pair allowed the ex vivo tight and reversible control of the CAR surface presentation and the subsequent CAR-induced signaling and cytolytic functions of the engineered T-cells using the cell permeable Asunaprevir (ASN) small molecule. Conclusions The strategy described in this study could, in principle, be broadly adapted to CAR T-cells development to circumvent some of the possible hurdle of CAR T-cell manufacturing. This system essentially creates a CAR T-cell with an integrated functional rheostat. Electronic supplementary material The online version of this article (10.1186/s12896-019-0537-3) contains supplementary material, which is available to authorized users.
In medium where in vitro transfection is routinely performed, DC-chol liposomes alone were nearly neutral, whereas the DC-chol liposome/DNA complexes were largely negatively charged which changed only slightly at all [liposome]/[DNA] ratios (zeta=-27.1 to -21.8 mV). Three other commercial transfection reagents, Lipofectin(R), LipofectAMINE 2000, and SuperFect, were also largely negatively charged when complexed with DNA. The aggregation of liposomes in medium was prevented by the addition of DNA. Incubation of the complexes in medium did not change their size, charge or lipofection activity for 30 min. These results suggest that, in medium, the liposome/DNA complexes were formed at the time of mixing with negative charges.
We have tested the zeta potential (zeta, the surface charge density) of transfection complexes formed in serum-free medium as a rapid and reliable technique for screening transfection efficiency of a new reagent or formulation. The complexes of CAT plasmid DNA (1 microgram) and DC-chol/DOPE liposomes (3-20 nmol) were largely negatively charged (zeta=-15 to -21 mV), which became neutral or positive as 0.5 microgram or a higher amount of poly-L-lysine (PLL, MW 29300 or MW 204000) was added (-3.16+/-3.47 to +6.04+/-2.23 mV). However, the complexes of CAT plasmid DNA (1 microgram) and PLL MW 29300 (0.5 microgram or higher) were neutral or positively charged (-3.22+/-2.3 to +6.55+/-0.64 mV), which remained the same as 6.6 nmol of the liposomes was added. The complexes formed between two positively charged compounds, PLL MW 29300 (0.5 microgram) and the liposomes (3-20 nmol), were as closely positively charged as DNA/PLL or DNA/liposomes/PLL complexes (+3.31+/-0.41 to 7.16+/-1.0 mV). These results indicate that PLL determined the overall charge of the DNA/liposome/PLL ternary complexes. The complexes formed with histone (0.75 microgram or higher) were also positively charged, whose transfection activity was as high as PLL MW 29300. However, the complexes formed with protamine or PLL MW 2400 remained negatively charged. These observations are in good agreement with the transfection activity of the formulation containing each polycationic polymer. The presence of PLL MW 29300 did not change the hydrodynamic diameter of DNA/liposome/PLL complexes (d(H)=275-312 nm). The complexes made of different sizes of PLL (MW 2400 and 204000) also did not significantly change their size. This suggests that DNA condensation may not be critical. Therefore, zeta of the transfection complex can predict the transfection efficiency of a new formulation or reagent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.