Background Breast cancer is one the most common cancers, making it the second leading cause of cancer-related death among women. Long non-coding RNAs (lncRNAs), with tightly regulated expression patterns, also serve as tumor suppressor during tumorigenesis. The present study aimed to elucidate the role of LINC00968 in breast cancer via WNT2-mediated Wnt2/β-catenin signaling pathway. Methods Breast cancer chip GSE26910 was utilized to identify differential expression in LINC00968 and WNT2. The possible relationship among LINC00968, transcriptional repressor HEY and WNT2 was analyzed and then verified. Effects of LINC00968 on activation of the Wnt2/β-catenin signaling pathway was also tested. Drug resistance, colony formation, cell migration, invasion ability and cell apoptosis after transfection were also determined. Furthermore, tumor xenograft in nude mice was performed to test tumor growth and weight in vivo. Results WNT2 expression exhibited at a high level, whereas LINC00968 at a low expression in breast cancer which was also associated with poor prognosis in patients. LINC00968 targeted and negatively regulated WNT2 potentially via HEY1. Either overexpressed LINC00968 or silenced inhibited activation of the Wnt2/β-catenin signaling pathway, thereby reducing drug resistance, decreasing colony formation ability, as well as suppressing migration and invasion abilities of breast cancer cells in addition to inducing apoptosis. Lastly, in vivo experiment suggested that LINC00968 overexpression also suppressed transplanted tumor growth in nude mice. Conclusion Collectively, overexpressed LINC00968 contributes to reduced drug resistance in breast cancer cells by inhibiting the activation of the Wnt2/β-catenin signaling pathway through silencing WNT2. This study offers a new target for the development of breast cancer treatment.
Background: Prostate cancer (PCa) is a common malignant tumor of the urinary system in males. LncRNA taurine-upregulated gene 1 (TUG1) has been verified to play a crucial role in progression and prognosis of PCa. However, the functional mechanism of TUG1 remains unclear with radiosensitivity of PCa. Methods: Quantitative real-time PCR (qRT-PCR) was conducted to measure the transcription levels of genes. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and flow cytometry analysis were employed to assess cell proliferation and apoptosis, respectively. Moreover, colony formation assay was used to measure colony survival. Western blot was performed to detect the relative proteins expression. The interaction among variables was predicted by online tool starbase, and then confirmed using the dual luciferase reporter assay. A xenograft mouse model was constructed to investigate the effect of TUG1 on tumor growth in vivo. Results: The levels of lncRNA TUG1 and SMC1A were remarkably increased, while miR-139-5p was downregulated in PCa. Patients with high expression of TUG1 showed a lower survival rate and poor prognosis. Knockdown of TUG1 inhibited PCa cell proliferation and colony survival fraction, and promoted apoptosis. Downregulation of miR-139-5p reversed the effects of TUG1 deletion on proliferation, apoptosis and colony survival fraction in PCa cells treated with 4 Gy of X-ray radiation. Moreover, TUG1 sponged miR-139-5p to regulate SMC1A expression. SMC1A deletion blocked the effects of TUG1 on the progression of PCa cells treated with 4 Gy of X-ray radiation. The tumor volume and weight were illustriously reduced with radiation and TUG1 silencing in xenograft model. Conclusion: Knockdown of lncRNA TUG1 enhanced radiosensitivity in PCa via the TUG1/ miR-139-5p/SMC1A axis. It may become a promising target for PCa treatment.
Background Prostate cancer is one of the most commonly diagnosed diseases in males. Methods RT-qPCR was used to detect miR-129-5p expression in tumor tissues and adjacent normal tissues from patients with prostate cancer. The cell proliferation assay and colony forming assay were used to study the role of miR-129-5p in mediating prostate cancer cell growth. Bioinformatic analysis and dual luciferase assay were performed to predict and confirm ETV1 as a target gene of miR-129-5p. Results We found that miR-129-5p levels were decreased significantly in human prostate cancer tissues compared with matched normal tissues from patients with prostate cancer. Overexpression of miR-129-5p suppressed prostate cancer cell growth while antagonist of miR-129-5p promoted cell proliferation in immortal prostate cell line RWPE-1. In addition, elevation of miR-129-5p decreased ETV1 expression in prostate cancer cells while downregulation of miR-129-5p increased ETV1 expression in RWPE-1. Mechanistically, ETV1 is confirmed a direct target of miR-129-5p in prostate cancer cells. Through repression of ETV1 expression, miR-129-5p could inactivate YAP signaling in prostate cancer cells. In addition, overexpression of ETV1 attenuated miR-129-5p induced cell proliferation in prostate cancer cells. Correlation analysis further revealed that there was a negative correlation between miR-129-5p levels and ETV1 mRNA levels in tumor tissues from patients with prostate cancer. Conclusion Our results identified miR-129-5p as a tumor suppressor in prostate cancer via repression of ETV1.
The present study aimed to reveal the expression of STAT3 and Anxa 2 in CRC specimens and to investigate the effects of STAT3 and Anxa 2 signaling on the proliferation, invasion, and migration in CRC Caco-2 cells. Results demonstrated that both Anxa 2 and STAT3 were highly expressed in CRC specimens in both mRNA and protein levels, with or without phosphorylation (Tyrosine 23 in Anxa 2 and Tyrosine 705 in STAT3). And the upregulated Anxa 2 promoted the phosphorylation of STAT3 (Tyrosine 705) in CRC Caco-2 cells. The upregulated Anxa 2 promoted the proliferation, migration, and invasion of Caco-2 cells in vitro. Moreover, the STAT3 knockdown also repressed the proliferation, migration, and invasion of Caco-2 cells. In conclusion, the overexpressed Annexin A2 regulated the proliferation, invasion, and migration in CRC cells in an association with STAT3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.