Many fluorophores/probes suffer from the interference of albumin in biosystems. Herein, we propose an effective strategy to overcome this interference by virtue of both an albumin‐insensitive fluorophore and its changeable π‐conjugation, and demonstrate the strategy by designing an oxazine‐based fluorogenic probe for aminopeptidase N (APN). The modification on the N atom in the oxazine fluorophore with alanine through a cleavable linker locks the resulting probe in a non‐conjugated, colorless and non‐fluorescent state, so the non‐specific interaction of albumin produces no spectroscopic response. APN can selectively cleave the alanine moiety, restoring the large π‐conjugation and strong fluorescence. The capability of the probe to eliminate the albumin influence has been demonstrated by imaging APN in different cell lines, and by quantitatively determining APN in human serum and mouse urine. The present strategy may be useful for developing more specific fluorogenic probes for other enzymes.
Small molecular probes emitting in the second near-infrared window (NIR-II) are attracting great attention because of their deep-tissue imaging ability. However, developing NIR-II fluorogenic (off-on) probes with good water solubility...
Many fluorophores/probes suffer from the interference of albumin in biosystems. Herein, we propose an effective strategy to overcome this interference by virtue of both an albumin-insensitive fluorophore and its changeable π-conjugation, and demonstrate the strategy by designing an oxazine-based fluorogenic probe for aminopeptidase N (APN). The modification on the N atom in the oxazine fluorophore with alanine through a cleavable linker locks the resulting probe in a non-conjugated, colorless and nonfluorescent state, so the non-specific interaction of albumin produces no spectroscopic response. APN can selectively cleave the alanine moiety, restoring the large π-conjugation and strong fluorescence. The capability of the probe to eliminate the albumin influence has been demonstrated by imaging APN in different cell lines, and by quantitatively determining APN in human serum and mouse urine. The present strategy may be useful for developing more specific fluorogenic probes for other enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.