Atomic force microscopy (AFM) based nanomanipulation can align the orientation and position of individual carbon nanotubes accurately. However, the flexible deformation during the tip manipulation modifies the original shape of these nanotubes, which could affect its electrical properties and reduce the accuracy of AFM nanomanipulation. Thus, we developed a protocol for searching the synergistic parameter combinations to push single-wall carbon nanotubes (SWCNTs) to maintain their original shape after manipulation as far as possible, without requiring the sample physical properties and the tip-manipulation mechanisms. In the protocol, from a vast search space of manipulating parameters, the differential evolution (DE) algorithm was used to identify the optimal combinations of three parameters rapidly with the DE algorithm and the feedback of the length ratio of SWCNTs before and after manipulation. After optimizing the scale factor F and crossover probability Cr, the values F = 0.4 and Cr = 0.6 were used, and the ratio could reach 0.95 within 5–7 iterations. A parameter region with a higher length ratio was also studied to supply arbitrary pushing parameter combinations for individual manipulation demand. The optimal pushing parameter combination reduces the manipulation trajectory and the tip abrasion, thereby significantly improving the efficiency of tip manipulation for nanowire materials. The protocol for searching the best parameter combinations used in this study can also be extended to manipulate other one-dimensional nanomaterials.
Knowledge about the frictional characteristics of materials is required for equipment design, either to exploit the friction or to overcome it. This paper deals with studying the coefficients of sliding friction of non-treated and extrusion-exploded wheat straw and rice straw on mild steel and aluminum surfaces and the effects of several factors, including the moisture content (at five levels 35, 45, 55, 65, and 75%), normal pressure (at the following five levels: 2, 4, 6, 8, and 10 kPa), and length (at the following five levels: 30, 60, 90, 120, and 150 mm). Through the use of a statistical analysis method, we found that the moisture content, normal pressure, and interactions between them had statistically significant effects on the coefficient of sliding friction (p < 0.01). The coefficient of sliding friction was much larger than that of rice straw on both contact surfaces, and the coefficient values of both straw samples on the aluminum surface were notably higher than those on mild steel. A significantly higher value was found for the coefficient of sliding friction of extrusion-exploded straw compared with that of untreated straw on both surfaces. As the normal pressure increased from 2 to 10 kPa, the coefficient of sliding friction decreased first, and then increased sharply, finally fluctuating slowly for both kinds of straw and on both tested surfaces, with the maximum value was observed at a normal pressure of 6 kPa. When the length increased from 30 to 150 mm, a slightly linear upward trend was observed for the coefficient of sliding friction of untreated wheat straw, and the coefficient of sliding friction of untreated rice straw initially increased and then decreased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.