Pneumonia remains the leading cause of infectious deaths and yet fundamentally new conceptual models underlying its pathogenesis have not emerged. Patients and mice with bacterial pneumonia have marked elevations of cardiolipin in lung fluid, a rare, mitochondrial-specific phospholipid that potently disrupts surfactant function. Intratracheal cardiolipin in mice recapitulates the clinical phenotype of pneumonia including impaired lung mechanics, modulation of cell survival and cytokine networks, and lobar consolidation. We have identified and characterized the activity of a novel cardiolipin transporter, ATP8b1, a mutant version of which is associated with severe pneumonia in humans and mice. ATP8b1 bound and internalized cardiolipin from extracellular fluid via a basic residue-enriched motif. Administration of cardiolipin binding motif peptide or ATP8b1 gene transfer in mice lessened lung injury and improved survival. The results unveil a new paradigm whereby ATP8b1 is a cardiolipin importer but its capacity to remove cardiolipin from lung fluid is exceeded during inflammation or ATP8b1 inefficiency. This discovery opens the door for new therapeutic strategies directed at modulating cardiolipin levels or its molecular interactions in pneumonia.
Signaling through platelet-derived growth factor receptor-α (PDGFRα) is required for alveolar septation and participates in alveolar regeneration after pneumonectomy. In both adipose tissue and skeletal muscle, bipotent pdgfrα-expressing progenitors expressing delta-like ligand-1 or sex-determining region Y box 9 (Sox9) may differentiate into either lipid storage cells or myofibroblasts. We analyzed markers of mesenchymal progenitors and differentiation in lung fibroblasts (LF) with different levels (absent, low, or high) of pdgfrα gene expression. A larger proportion of pdgfrα-expressing than nonexpressing LF contained Sox9. Neutral lipids, CD166, and Tcf21 were more abundant in LF with a lower compared with a higher level of pdgfrα gene expression. PDGF-A increased Sox9 in primary LF cultures, suggesting that active signaling through PDGFRα is required to maintain Sox9. As alveolar septation progresses from postnatal day (P) 8 to P12, fewer pdgfrα-expressing LF contain Sox9, whereas more of these LF contain myocardin-like transcription factor-A, showing that Sox9 diminishes as LF become myofibroblasts. At P8, neutral lipid droplets predominate in LF with the lower level of pdgfrα gene expression, whereas transgelin (tagln) was predominantly expressed in LF with higher pdgfrα gene expression. Targeted deletion of pdgfrα in LF, which expressed tagln, reduced Sox9 in α-actin (α-SMA, ACTA2)-containing LF, whereas it increased the abundance of cell surface delta-like protein-1 (as well as peroxisome proliferator-activated receptor-γ and tcf21 mRNA in LF, which also expressed stem cell antigen-1). Thus pdgfrα deletion differentially alters delta-like protein-1 and Sox9, suggesting that targeting different downstream pathways in PDGF-A-responsive LF could identify strategies that promote lung regeneration without initiating fibrosis.
Respiratory syncytial virus (RSV) preferentially infects lung epithelial cells. Infected cells remain viable well into the infection. This prolonged survival results from RSV-induced activation of pro-survival pathways, including Akt and extracellular signal-related kinase (ERK). Sphingosine 1-phosphate (S1P) is a sphingolipid metabolite with demonstrated links to cell survival. It is enzymatically generated by sequential activation of ceramidase (generation of sphingosine) and sphingosine kinase (generation of S1P). In these studies, we found that RSV stimulated neutral ceramidase and sphingosine kinase activities in lung epithelial cells. The combined effect of activation of these two enzymes would decrease proapoptotic ceramide and increase antiapoptotic S1P. S1P activated Akt and ERK within minutes, and inhibition of sphingosine kinase blocked RSV-induced ERK and Akt activation, leading to accelerated cell death after viral infection. RSV infection does eventually kill infected cells but activation of cell survival pathways significantly delays cell death. The studies are the first evidence linking sphingolipid metabolites to cell survival mechanisms in the context of a viral infection.
In mice, secondary alveolar septal formation primarily occurs during a brief postnatal period and is accompanied by transient expansion of the interstitial lung fibroblast (LF) population. PDGF-A, which solely signals through PDGF-receptor-alpha (PDGF-R␣), is required for expansion, but the receptor's relevant downstream targets remain incompletely defined. We have evaluated the proliferation, apoptosis, and differential response to the selective protein tyrosine kinase inhibitor, imatinib, by pdgfr␣-expressing LF (pdgfr␣-LF) and compared them with their nonexpressing LF counterparts. Our objective was to determine whether diminished signaling through PDGF-R␣-mediated pathways regulates the decline in myofibroblasts, which accompanies septal thinning and ensures more efficient alveolar gas exchange. Using quantitative stereology and flow cytometry at postnatal d 12 and 14, we observed that imatinib caused a selective suppression of proliferation and an increase in apoptosis. The number of the alpha smooth muscle actin (␣SMA) producing pdgfr␣-LF was also reduced. Using cultures of neonatal mouse LF, we showed that imatinib did not suppress PDGF-R␣ gene expression but reduced PDGF-A-mediated Akt phosphorylation, potentially explaining the increase in apoptosis. Our findings are relevant to bronchopulmonary dysplasia in which positive pressure ventilation interferes with myofibroblast depletion, septal thinning, and capillary maturation.
The phosphatidylinositol (PI) 3-kinase pathway is an important regulator of cell survival. In human alveolar macrophages, we found that LPS activates PI 3-kinase and its downstream effector, Akt. LPS exposure of alveolar macrophages also results in the generation of ceramide. Because ceramide exposure induces apoptosis in other cell types and the PI 3-kinase pathway is known to inhibit apoptosis, we determined the relationship between LPS-induced ceramide and PI 3-kinase activation in alveolar macrophages. We found that ceramide exposure activated PI 3-kinase and Akt. When we blocked LPS-induced ceramide with the inhibitor D609, we blocked LPS-induced PI 3-kinase and Akt activation. Evaluating cell survival after ceramide or LPS exposure, we found that blocking PI 3-kinase induced a significant increase in cell death. Because these effects of PI 3-kinase inhibition were more pronounced in ceramide- vs LPS-treated alveolar macrophages, we also evaluated NF-κB, which has also been linked to cell survival. We found that LPS, to a greater degree than ceramide, induced NF-κB translocation to the nucleus. As a composite, these studies suggest that the effects of ceramide exposure in alveolar macrophages may be very different from the effects described for other cell types. We believe that LPS induction of ceramide results in PI 3-kinase activation and represents a novel effector mechanism that promotes survival of human alveolar macrophages in the setting of pulmonary sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.