Aberrant sodium absorption has been linked to the development of hypertension in both renal disease and diabetes. Efficient absorption depends on coordination of cellular activity across the entire epithelium via cell-to-cell coupling. In the current study we have utilized a model human collecting duct cell line (HCD) to assess the role of connexin43 (Cx43)-mediated gap junctions in the transfer of intracellular Ca(2+) transients within coupled cell clusters. HCD cells express Cx43 mRNA and protein, as well as that for the mechanosensitive transient receptor potential receptor (TRPV4). Mechanical stimulation of individual cells within a cluster evoked a transient rise in cytosolic Ca(2+) concentration ([Ca(2+)](i)) that propagated between cells via a heptanol-sensitive mechanism. The rise in [Ca(2+)](i) was dependent on both store release and Ca(2+)-influx pathways. Lucifer yellow dye transfer and Cx43 knockdown experiments confirmed direct cell-to-cell communication. Application of the Ca(2+) ionophore ionomycin, or an increase in glucose (5 to 25 mM), produced a time-dependent (48 h) increase in Cx43 protein expression. The transmission rate of touch-evoked Ca(2+) transients between coupled cells was accelerated after exposure to high glucose, providing a functional correlate to increased Cx43 expression. These data suggest a pivotal role for Cx43-mediated gap junctions in the synchronization of activity between HCD cells in response to stimuli that mimic osmotic and physical changes. Cx43 expression and cell-to-cell communication increased in response to high glucose and may protect the collecting duct from renal damage associated with more established diabetic nephropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.