An automated method for segmenting digital images of orographic cumulus and a simple metric for characterizing the transition from shallow to deep convection are presented. The analysis is motivated by the hypothesis that shallow convection conditions the atmosphere for further deep convection by moistening it and preventing the evaporation of convective turrets through the entrainment of dry air. Time series of convective development are compared with sounding and surface data for 6 days during the summer of 2003. The observations suggest the existence of a threshold for the initiation of shallow convection based on the surface equivalent potential temperature and the saturated equivalent potential temperature above the cloud base. This criterion is similar to that controlling deep convection over the tropical oceans. The subsequent evolution of the convection depends on details of the environment. Surface fluxes of sensible and latent heat, along with the transport of boundary layer air by upslope flow, increase the surface equivalent potential temperature and once the threshold value is exceeded, shallow convection begins. The duration of the shallow convection period and growth rate of the deep convection are determined by the kinematic and thermodynamic structure of the mid- and upper troposphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.