Fine-scale topographic complexity creates important microclimates that can facilitate species to grow outside their main distributional range and increase biodiversity locally. Enclosed depressions in karst landscapes (‘dolines’) are topographically complex environments which produce microclimates that are drier and warmer (equator-facing slopes) and cooler and moister (pole-facing slopes and depression bottoms) than the surrounding climate. We show that the distribution patterns of functional groups for organisms in two different phyla, Arthropoda (ants) and Tracheophyta (vascular plants), mirror this variation of microclimate. We found that north-facing slopes and bottoms of solution dolines in northern Hungary provided key habitats for ant and plant species associated with cooler and/or moister conditions. Contrarily, south-facing slopes of dolines provided key habitats for species associated with warmer and/or drier conditions. Species occurring on the surrounding plateau were associated with intermediate conditions. We conclude that karst dolines provide a diversity of microclimatic habitats that may facilitate the persistence of taxa with diverse environmental preferences, indicating these dolines to be potential safe havens for multiple phyla under local and global climate oscillations.
Red wood ants are keystone species of forest ecosystems in Europe. Environmental factors and habitat characteristics affect the size of their nest mounds, an important trait being in concordance with a colony’s well-being and impact on its surroundings. In this study, we investigated the effect of large-scale (latitude and altitude) and small-scale environmental factors (e.g., characteristics of the forest) on the size of nest mounds of Formica polyctena in Central Europe. We predicted that the change in nest size is in accordance with Bergmann’s rule that states that the body size of endotherm animals increases with the higher latitude and/or altitude. We found that the size of nests increased along the latitudinal gradient in accordance with Bergmann’s rule. The irradiation was the most important factor responsible for the changes in nest size, but temperature and local factors, like the perimeter of the trees and their distance from the nest, were also involved. Considering our results, we can better understand the long-term effects and consequences of the fast-changing environmental factors on this ecologically important group. This knowledge can contribute to the planning of forest management tactics in concordance with the assurance of the long-term survival of red wood ants.
Effects of temperature and host plant condition on insect development have been examined in a number of studies but their combined effect is not well investigated. In this study the effects of varying temperatures and host plant conditions and its interaction on development, survival, and coloration of solitarious and gregarious forms of African armyworm (AW), Spodoptera exempta, an outbreak pest species, were studied under laboratory condition. Rearing temperature was found to have significant effects on larval and pupal development and pupal weight in both solitarious and gregarious forms. The effects of host plant condition in both forms were variable; significant effects were consistently observed in pupal development for both gregarious and solitarious forms but not in larval development and pupal weight. Larval and pupal survival of the solitarious form significantly decreased with the decreased in temperature, while only pupal survival decreased with the decreased in temperature in gregarious form. Distinct larval coloration was also observed in different temperatures. Larvae reared at high temperature exhibited lighter coloration, while larvae reared at low temperature exhibited darker coloration regardless of rearing density. The significant interaction of temperature and host plant condition on many aspects of insect fitness measured in this study highlights the need for further studies on the effects of other environmental factors such as relative humidity, rainfall, and light intensity to improve predictions as to how these insect pests will respond to climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.