A series of molecular dynamics (MD) simulations of different pregelification mixtures representing intermediate stages of the sol-gel process were set up to gain insight into the molecular imprinting process in xerogels, namely, to assess the template-gel affinity and template self-aggregation. The physical plausibility of the parametrization was checked, confirming the reliability of the simulations. The simulated mixtures differed in the water/methanol ratio (1:3, 5:3, and 5:1) and in the absence/presence of an organic functional group (phenylaminopropyl-) in the silicate species. The simulation results, expressed mainly by the radial distribution functions and respective coordination numbers, showed that the affinity of the template molecule, damascenone (a hydrophobic species), for the gel backbone would not be attained without the tested functional group, phenylaminopropyl-. The affinity, related to the capability to trap the template within the gel network, was derived mostly from the hydrophobic interaction. It was also inferred from MD simulations that lower water contents (methanol-richer mixtures) would facilitate a better dispersion of both the functional group and the template within the final gel, therefore favoring the imprinting process. From the experimental counterparts of the simulated mixtures, a series of imprinted and nonimprinted xerogels were obtained. There was only one xerogel exhibiting the imprinting effect, namely, the one containing the organic group obtained at the lower water/methanol ratio (1:3), in agreement with predictions from the MD simulations. Such congruence demonstrates the ability of MD simulations to provide information regarding the fine aspects of molecular interactions in pregelification mixtures for imprinting.
Macromolecules, such as polyethylene glycol (PEG), have been frequently used in the preparation of xerogels, mainly with the purpose of tuning the meso- or macroporosity. However, PEG has never been applied in the context of the preparation of molecularly imprinted xerogels for small molecules. Thus, we decided to conduct a computational and experimental study of the incorporation of PEG into formerly studied sol-gel mixtures for the preparation of damascenone-imprinted xerogels. Computationally, two types of pregelification models were studied, one representing the initial mixture (SI3/SIPA:5:3 models) and the other representing the same mixtures after considerable solvent loss (SI3/SIPA:40:1 models). The latter ones were particularly prolific in providing clear effects of the PEG. In the SI3:40:1 model (containing SI3 units of Si(3)O(3)(OH)(6) mimicking the final xerogels backbone), a prohibitive instead of a promoting effect of PEG on the template-SI3 association was observed. PEG was found to interpose the SI3 aggregates, turning them smaller and more disperse. In agreement with that, a much higher porosity and surface area were found for the corresponding xerogel prepared with PEG, while no appreciable improvement of the imprinting efficiency could be observed. In the SIPA:40:1 model (containing both SI3 and SIPA units; SIPA, Si(3)O(3)(OH)(5)C(3)H(6)NHC(6)H(5), representing the introduction of the organic functional group into the xerogel network), the interactions related to the network structuring were not significantly affected. This was due to the fact that the SIPA units themselves had a dispersive effect on the silica network; the PEG molecules were "pushed" into the aqueous/methanolic continuum, and their presence was somewhat redundant. Accordingly, both prepared SIPA-xerogels (with PEG or not) exhibited higher porosity compared to SI3-xerogels. Although the simulation results were not conclusive about the effect of PEG on the template-functional group association, experimentally it was clear that the imprinting effect was not improved with PEG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.