Purpose: Hypoxia is a characteristic of solid tumors and a potentially important therapeutic target. Here, we characterize the mechanism of action and preclinical antitumor activity of a novel hypoxia-activated prodrug, the 3,5-dinitrobenzamide nitrogen mustard PR-104, which has recently entered clinical trials. Experimental Design: Cytotoxicity in vitro was evaluated using 10 human tumor cell lines. SiHa cells were used to characterize metabolism under hypoxia, by liquid chromatography-mass spectrometry, and DNA damage by comet assay and gH2AX formation. Antitumor activity was evaluated in multiple xenograft models (PR-104 F radiation or chemotherapy) by clonogenic assay 18 h after treatment or by tumor growth delay. Results: The phosphate ester ''pre-prodrug'' PR-104 was well tolerated in mice and converted rapidly to the corresponding prodrug PR-104A. The cytotoxicity of PR-104A was increased 10-to 100-fold by hypoxia in vitro. Reduction to the major intracellular metabolite, hydroxylamine PR-104H, resulted in DNA cross-linking selectively under hypoxia. Reaction of PR-104H with chloride ion gave lipophilic cytotoxic metabolites potentially able to provide bystander effects. In tumor excision assays, PR-104 provided greater killing of hypoxic (radioresistant) and aerobic cells in xenografts (HT29, SiHa, and H460) than tirapazamine or conventional mustards at equivalent host toxicity. PR-104 showed single-agent activity in six of eight xenograft models and greater than additive antitumor activity in combination with drugs likely to spare hypoxic cells (gemcitabine with Panc-01pancreatic tumors and docetaxel with 22RV1prostate tumors). Conclusions: PR-104 is a novel hypoxia-activated DNA cross-linking agent with marked activity against human tumor xenografts, both as monotherapy and combined with radiotherapy and chemotherapy.Hypoxia is a uniquely attractive target in oncology for two reasons. The first is that hypoxic cells are obstacles to curative cancer therapy with all major treatment modalities. Hypoxia can compromise outcomes of surgery by increasing tumor metastasis (1 -3). It is also a major cause of radioresistance because oxygen is a radiosensitizer, and multiple clinical studies have documented the importance of hypoxia determining local tumor control in radiotherapy (4 -6). Hypoxia also contributes to chemoresistance through multiple mechanisms (7), including limitations on delivery of blood-borne drugs to hypoxic regions of tumors (8,9). The second reason for targeting hypoxia is that it is a common feature of a wide variety of human tumors and is typically more severe in tumors than in normal tissues, thus providing a basis for tumor selectivity (10,11).Several strategies for exploiting tumor hypoxia are now in preclinical or clinical development (7), with the main focus on prodrugs that are activated by metabolic reduction under hypoxic conditions to form cytotoxins. Early efforts focused on quinone bioreductive drugs, such as porfiromycin (12), and 2-nitroimidazole -linked alkylating a...
An important feature of gene-directed enzyme-prodrug therapy is that prodrug activation can provide diffusible cytotoxic metabolites capable of generating a local bystander effect in tumours. Activation of the aziridinyl dinitrobenzamide CB 1954 by E. coli nitroreductase (NTR) provides a bystander effect assumed to be due to the potently cytotoxic 4-hydroxylamine metabolite. We show that there are four cytotoxic extracellular metabolites of CB 1954 in cultures of NTR-expressing tumour cells (the 2-and 4-hydroxylamines and their corresponding amines). The 4-hydroxylamine is the most cytotoxic in DNA crosslink repair defective cells, but the 2-amino derivative (CB 10-236) is of similar potency to the 4-hydroxylamine in human tumour cell lines. Importantly, CB 10-236 has much superior diffusion properties to the 4-hydroxylamine in multicellular layers grown from the SiHa human cervical carcinoma cell line. These results suggest that the 2-amine, not the 4-hydroxylamine, is the major bystander metabolite when CB 1954 is activated by NTR in tumours. The corresponding dinitrobenzamide nitrogen mustard SN 23862 is reduced by NTR to form a single extracellular metabolite (also the 2-amine), which has superior cytotoxic potency and diffusion properties to the CB 1954 metabolites. These results are consistent with the reported high bystander efficiency of SN 23862 as an NTR prodrug in multicellular layers and tumour xenografts.
A follow-up of smoking behaviour to age 18 in a longitudinal study of a birth cohort enabled an assessment of the prevalence of smoking and quitting among adolescents approaching adulthood. There was a dramatic increase in number of daily smokers (15% at age 15 years to 31% at age 18 years), and in a climate of expected decreases in smoking, a history of never smoking to age 15 years was not as protective against future smoking as anticipated. Among 15-year-olds who had experimented with smoking, only 11% per year stopped by age 18 years. Cessation rates for adolescent daily smokers were low (3% had not smoked in the last year at age 18 years), and previously have not been widely reported. We also examined some methodological issues related to self-reported prevalence rates, in particular reliability, validity and sources of bias, finding confirmation of the accuracy of information from prospective longitudinal studies and supporting the conclusion that adolescents' recall for information beyond a 1-year period is inconsistent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.