We propose a new concept of photoacoustic gas sensing based on capacitive transduction which allows full integration while conserving the required characteristics of the sensor. For the sensor’s performance optimization, trial and error method is not feasible due to economic and time constrains. Therefore, we focus on a theoretical optimization of the sensor reinforced by computational methods implemented in a Python programming environment. We present an analytic model to optimize the geometry of a cantilever used as a capacitive transducer in photoacoustic spectroscopy. We describe all the physical parameters which have to be considered for this optimization (photoacoustic force, damping, mechanical susceptibility, capacitive transduction, etc.). These parameters are characterized by opposite trends. They are studied and compared to obtain geometric values for which the signal output and signal-to-noise ratio are maximized.
Introduction. Exhaled breath acetone (ExA) has been investigated as a biomarker for heart failure (HF). Yet, barriers to its use in the clinical field have not been identified. The aim of this systematic review and meta-analysis was to assess the ExA heterogeneity and factors of variability in healthy controls (HC), to identify its relations with HF diagnosis and prognostic factors and to assess its diagnosis and prognosis accuracy in HF patients. Methods. A systematic search was conducted in PUBMED and Web of Science database. All studies with HC and HF patients with a measured ExA were included and studies providing ExA’s diagnosis and prognosis accuracy were identified. Results. Out of 971 identified studies, 18 studies involving 833 HC and 1009 HF patients were included in the meta-analysis. In HC, ExA showed an important heterogeneity (I
2 = 99%). Variability factors were fasting state, sampling type and analytical method. The mean ExA was 1.89 times higher in HF patients vs. HC (782 [531–1032] vs. 413 [347–478] ppbv; p < 0.001). One study showed excellent diagnosis accuracy, and one showed a good prognosis value. ExA correlated with New York Heart Association (NYHA) dyspnea (p < 0.001) and plasma brain natriuretic peptide (p < 0.001). Studies showed a poor definition and reporting of included subjects. Discussion. Despite the between-study heterogeneity in HC, the evidence of an excellent diagnosis and prognosis value of ExA in HF from single studies can be extended to clinical populations worldwide. Factors of variability (ExA procedure and breath sampling) could further improve the diagnosis and prognosis values of this biomarker in HF patients.
Benzene is a gas known to be highly pollutant for the environment, for the water and cancerogenic for humans. In this paper, we present a sensor based on Quartz Enhanced Photoacoustic Spectroscopy dedicated to benzene analysis. Exploiting the infrared emission of a 14.85 µm quantum cascade laser, the sensor is working in an off-beam configuration, allowing easy alignment and stable measurements. The technique provides a very good selectivity to the sensor and a limit of detection of 30 ppbv in 1 s, i.e. a normalized noise equivalent absorption of 1.95 × 10−8 W.cm−1.Hz−1/2. The achieved performances of the sensor have enabled measurements on several air samples of a gas station showing a non-neglectable risk in case of long exposure.
In Quartz-Enhanced PhotoAcoustic Spectroscopy (QEPAS) gas sensors, the acoustic wave is detected by the piezoelectric Quartz Tuning Fork (QTF). Due to its high-quality factor, the QTF can detect very low-pressure variations, but its resonance can also be affected by the environmental variations (temperature, humidity, …), which causes an unwanted signal drift. Recently, we presented the RT-QEPAS technique that consistently corrects the signal drift by continuously measuring the QTF resonance. In this article, we present an improvement of RT-QEPAS to fasten the QTF characterization time by adding a passive electronic circuit, which causes the damping of the QTF resonance. The damping circuit is optimized analytically and through SPICE simulation. The results are supported by experimental observations, showing a 70 times improvement of the relaxation times compared to the lone QTF, which opens the way to a fast and drift-free QEPAS sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.