Purpose Flail chest was traditionally treated non-operatively using mechanical ventilation and pain control. In order to reduce the occurrence of ventilation-associated complications and long-term disability, operative rib fixation is becoming a proven standard therapy for these patients. However, the consequences of the surgical complications may influence success rates negatively. The aim of this study was to compare the outcome of flail chest treatment by surgical rib fixation with nonoperative treatment, with special focus on the impact of surgical complications. Methods A retrospective case series of operatively treated flail chest patients was compared with non-operatively treated patients. Patients' injury and treatment characteristics and outcome parameters (e.g., duration of mechanical ventilation, length of Intensive Care stay (ICLOS) and hospital length of stay (HLOS), mortality, surgery-related complications and pneumonia) were collected from the patients' medical files. Crude and matched-pairs analyses were performed in SPSS. Results Twenty-three operatively and 47 non-operatively treated patients were enrolled. Operatively treated patients required significantly shorter mechanical ventilation; median 4 days versus 12 days for the non-operative group (p = 0.011). The matched-pairs analysis also showed a lower pneumonia rate (35% versus 80%; p = 0.035) and a shorter HLOS (median 21 versus 23 days; p = 0.028) in the operative group. No significant differences in duration of ICLOS, and occurrence of other injury-related adverse events were found between both groups. Seven surgery-related complications occurred, of which three required invasive solutions. Conclusions Operative fixation of a flail chest in trauma patients results in a lower rate of pneumonia, less mechanical ventilation days and shorter hospital stay, compared with non-operative treatment, but at the cost of surgery-related complications requiring invasive solutions in some cases.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The immune response affects tumor biological behavior and progression. The specific immune characteristics of pancreatic ductal adenocarcinoma (PDAC) can determine the metastatic abilities of cancerous cells and the survival of patients. Therefore, it is important to characterize the specific immune landscape in PDAC tissue samples, and the effect of various types of therapy on that immune composition. Previously, a set of marker genes was identified to assess the immune cell composition in different types of cancer tissue samples. However, gene expression and subtypes of immune cells may vary across different types of cancers. The aim of this study was to provide a method to identify immune cells specifically in PDAC tissue samples. The method is based on defining a specific set of marker genes expressed by various immune cells in PDAC samples. A total of 90 marker genes were selected and tested for immune cell type-specific definition in PDAC; including 43 previously used, and 47 newly selected marker genes. The immune cell-type specificity was checked mathematically by calculating the “pairwise similarity” for all candidate genes using the PDAC RNA-sequenced dataset available at The Cancer Genome Atlas. A set of 55 marker genes that identify 22 different immune cell types for PDAC was created. To validate the method and the set of marker genes, an independent mRNA expression dataset of 24 samples of PDAC patients who received various types of (neo)adjuvant treatments was used. The results showed that by applying our method we were able to identify PDAC specific marker genes to characterize immune cell infiltration in tissue samples. The method we described enabled identifying different subtypes of immune cells that were affected by various types of therapy in PDAC patients. In addition, our method can be easily adapted and applied to identify the specific immune landscape in various types of tissue samples.
Severe acute respiratory virus-2 (SARS-CoV-2) has spread globally leading to a devastating loss of life. Large registry studies have begun to shed light on the epidemiological and clinical vulnerabilities of cancer patients who succumb to or endure poor outcomes of SARS-CoV-2. Specific treatment for COVID-19 infections in cancer patients is lacking while the demand for treatment is increasing. Therefore, we explored the effect of Rintatolimod (Ampligen®) (AIM ImmunoTech, Florida, USA), a Toll-like receptor 3 (TLR3) agonist, to treat uninfected human pancreatic cancer cells (HPACs). The direct effect of Rintatolimod was measured by targeted gene expression profiling and by proteomics measurements. Our results show that Rintatolimod induces an antiviral effect in HPACs by inducing RNase-L-dependent and independent pathways of the innate immune system. Treatment with Rintatolimod activated the interferon signaling pathway, leading to the overexpression of several cytokines and chemokines in epithelial cells. Furthermore, Rintatolimod treatment increased the expression of angiogenesis-related genes without promoting fibrosis, which is the main cause of death in patients with COVID-19. We conclude that Rintatolimod could be considered an early additional treatment option for cancer patients who are infected with SARS-CoV-2 to prevent the complicated severity of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.