Encountering a problem or error in the final stages of providing products or services increases costs and delays scheduling. The key task is to ensure quality and reliability in the early stages of the production process and prevent errors from occurring from the beginning. Failure mode and effect analysis (FMEA) is one of the tools for identifying potential problems and their impact on products and services. The conventional FMEA technique has been criticized extensively due to its disadvantages. In this study, the concepts of uncertainty and reliability are considered simultaneously. The processes of weighting risk factors, prioritizing failures by using the stepwise weight assessment ratio analysis (SWARA)–gray relational analysis (GRA) integrated method based on Ζ-number theory and complete prioritization of failures are implemented. Crucial management indices, such as cost and time, are considered in addition to severity, occurrence and detection factors along with assigning symmetric form of the weights to them. This, in turn, increases the interpretability of results and reduces the decision-maker’s subjectivity in risk prioritization. The developed model is implemented on solar panel data with 19 failure modes determined by the FMEA team. Results show that the proposed approach provides a more complete and realistic prioritization of failures than conventional FMEA and fuzzy GRA methods do.
Industrialization and population growth have been accompanied by many problems such as waste management worldwide. Waste management and reduction have a vital role in national management. The presents study represents a multi-objective location-routing problem for hazardous wastes. The model was solved using Non dominated Sorting Genetic Algorithm-II, Multi-Objective Particle Swarm Optimization, Multi-Objective Invasive Weed Optimization, Pareto Envelope-based Selection Algorithm, Multi-Objective Evolutionary Algorithm Based on Decomposition and Multi-Objective Grey Wolf Optimizer algorithms. The findings revealed that the Multi-Objective Invasive Weed Optimization algorithm was the best and the most efficient among the algorithms used in this study. Obtaining income from the incineration of the wastes and reducing the risk of COVID-19 infection are the first innovation of the present study, which considered in the presented model. The second innovation is that uncertainty was considered for some of the crucial parameters of the model while the robust fuzzy optimization model was applied. Besides, the model was solved using several meta-heuristic algorithms such as Multi-Objective Invasive Weed Optimization, Multi-Objective Evolutionary Algorithm Based on Decomposition and Multi-Objective Grey Wolf Optimizer, which were rarely used in literature. Eventually, the most efficient algorithm was identified by comparing the considered algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.